[1]孟飞*,郭霖.华北地区气溶胶光学厚度时空分布特征研究[J].山东建筑大学学报,2021,36(02):9-15.[doi:10.12077/sdjz.2021.02.002]
 MENG Fei*,GUO Lin.Research on spatial and temporal distribution characteristics of aerosol optical depth in North China[J].Journal of Shandong jianzhu university,2021,36(02):9-15.[doi:10.12077/sdjz.2021.02.002]
点击复制

华北地区气溶胶光学厚度时空分布特征研究()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
36
期数:
2021年02期
页码:
9-15
栏目:
研究论文
出版日期:
2021-04-15

文章信息/Info

Title:
Research on spatial and temporal distribution characteristics of aerosol optical depth in North China
文章编号:
1673-7644(2021)02-0009-07
作者:
孟飞*郭霖
(山东建筑大学 测绘地理信息学院,山东 济南 250101)
Author(s):
MENG Fei* GUO Lin
(School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China)
关键词:
VIIRS IP气溶胶光学厚度华北地区时空变化
Keywords:
VIIRS IP aerosol optical depth North China spatial-temporal variation
分类号:
X513
DOI:
10.12077/sdjz.2021.02.002
文献标志码:
A
摘要:
华北地区一直是我国颗粒物污染最严重的地区之一,深入研究该地区近年来气溶胶光学厚度(AOD)空间分布和时间变化特征,能够为其环境治理提供决策支持。文章基于2014—2019年VIIRS IP 550 nm的AOD数据,系统分析了华北地区AOD的时空演化与空间分异特征。结果表明:2014—2019年,华北地区AOD月均差异较大,6~8月其值最大,1、12月其值最小;“十三五”期间,天津、济南、郑州、石家庄的AOD均值会出现明显下降,其中石家庄的下降幅度最大为18.5%,天津的下降幅度最小为3.4%,北京的AOD年均值增长率为0.2%,但始终保持较低水平;华北地区AOD空间分布受人为影响明显,呈南高北低的格局,高值区分布在河北南部、山东西部和河南北部,低值区则主要在河北北部和山西。
Abstract:
North China has always been one of the most serious areas of particulate matter pollution in China. By studying the spatial and temporal distribution characteristics of aerosol optical depth(AOD), the decision support for environmental governance can be provided Based on the AOD data of 550 nm of VIIRS IP from January 2014 to December 2019, the spatio-temporal evolution characteristics of AOD in the study area were systematically analyzed using North China as the study area. The results show that the monthly average of AOD in North China from 2014 to 2019 varies greatly, with the largest AOD value from June to August, the smallest AOD value in January and December. And then, during the 13th Five-Year Plan period, the average AOD of Tianjin, Jinan, Zhengzhou and Shijiazhuang dropped significantly, with the largest drop of 18.5% in Shijiazhuang and the smallest drop of 3.4% in Tianjin. the average annual growth rate of AOD in Beijing was 0.2%, but remained relatively low. Finally, the spatial distribution of AOD in North China is obviously influenced by anthropogenic influences, with a pattern of high-south and low-north, high-value areas in southern Hebei, western Shandong and northern Henan, while low-value areas are mainly found in northern Hebei and Shanxi provinces.

参考文献/References:

[1]毛节泰,张军华,王美华. 中国大气气溶胶研究综述[J]. 气象学报, 2002, 60(5):625-634. [2]RAMANTHAN V, LI F, RAMANA M V, et al. Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing[J]. Journal of Geophysical Research-Atmospheres, 2007, 112(D22):1-26.[3]LI Z Q, NIU F, FAN J W, et al. Long-term impacts of aerosols on the vertical development of clouds and precipitation[J]. Nature Geoscience, 2011, 4(12):888-894.[4]罗云峰,周秀骥,李维亮. 大气气溶胶辐射强迫及气候效应的研究现状[J]. 地球科学进展, 2013, 13(6):572-581. [5]朱文德,徐澍,郑逢斌,等. 基于MODIS数据的郑州地区PM2.5时空分布特征分析[J]. 河南大学学报(自然科学版), 2018, 48(2):172-178. [6]岳辉,刘英,张元敏.基于MODIS数据的中国地区气溶胶光学厚度时空变化特征[J].环境污染与防治,2020,42(1):89-93. [7]胡俊,亢燕铭,陈勇航, 等.基于MODIS_C006的乌鲁木齐10年气溶胶光学厚度变化特征[J].环境科学,2018,39(8):3563-3570. [8]刘雨华,郑小慎.环渤海地区气溶胶光学厚度数据选取及时空特征分析[J]. 环境科学学报, 2020, 40(5):1621-1628. [9]王跃思,辛金元,李占清,等. 中国地区大气气溶胶光学厚度与Angstrom参数联网观测(2004-08~2004-12)[J]. 环境科学, 2006, 27(9):1703-1711. [10]CHE H, ZHANG X, XIA X, et al. Ground-based aerosol climatology of China: Aerosol optical depths from the China aerosol remote sensing network (CARSNET)2002-2014[J]. Atmospheric Chemistry and Physics, 2015, 15(13):7619-7652. [11]XIN J Y, WANG L L, WANG Y S, et al. Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010[J]. Atmospheric Environment, 2011, 45(35):6317-6325. [12]郭婉臻,张飞,夏楠,等. 近十年中国陆地AOD时空分布及与城市化的关系研究[J]. 环境科学学报, 2019, 39(7):2339-2352. [13]MENG F, CAO C Y, SHAO X. Spatio-temporal variability of Suomi-NPP VIIRS-derived aerosol optical depth over China in 2013[J]. Remote Sensing of Environment, 2015, 163(3): 61-69. [14]刘海知,郭海燕,马振峰,等. 2001—2017年全国气溶胶光学厚度时空分布及变化趋势[J]. 环境科学, 2019, 40(9):3886-3897. [15]孔凡萍.卫星遥感气溶胶光学厚度及PM2.5浓度相关模型研究[D]. 北京:中国地质大学(北京), 2016. [16]张磊,江洪,陈诚,等. 广东省MODIS气溶胶光学厚度时空分布及其影响因素[J]. 地理空间信息, 2017, 15(1):46-49,58. [17]刘莹,林爱文,覃文敏,等. 1990—2017年中国地区气溶胶光学厚度的时空分布及其主要影响类型[J]. 环境科学, 2019, 40(6):2572-2581. [18]张瑞芳,于兴娜. 河南省气溶胶光学特性的时空变化特征[J]. 环境学报, 2020, 41(2):600-608. [19]MENG F, CAO C Y, SHAO X, et al. Spatial and temporal variation of Visible Infrared Imaging Radiometer Suite (VIIRS)-derived aerosol optical depth over Shandong, China[J]. International Journal of Remote Sensing, 2014, 35(16):6021-6034. [20]刘浩,高小明,谢志英,等. 京津冀晋鲁区域气溶胶光学厚度的时空特征[J]. 环境科学学报, 2015, 35(5):1506-1511. [21]郑逢斌,周致丞,刘扬,等. 基于MODIS的华北地区长时间序列气溶胶光学厚度时空分布特征研究[J]. 河南大学学报(自然科学版), 2019, 49(4):450-458. [22]张西雅,扈海波. 京津冀地区气溶胶时空分布及与城市化关系的研究[J]. 大气科学, 2017, 41(4): 797-810. [23]国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2018. [24]CAO C, DELUCCIA F, XIONG X, et al. Early on-orbit performance of the visible infrared imaging radiometer suite onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (2):1142-1156. [25]张小娟. 基于MODIS遥感DT和DB数据集的中国AOD分布与变化[D]. 南京: 南京信息工程大学, 2014. [26]姚玲玲. 中国及典型地区气溶胶光学厚度的时空分布特征及影响因素研究[D]. 杭州: 浙江大学, 2017. [27]李成才,毛节泰,刘启汉,等. 利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征[J]. 科学通报, 2003, 48(19):2094-2100.

相似文献/References:

[1]刘泽常,杨乃浩,许夏,等.城市AOD时空分布及与颗粒物浓度关系研究[J].山东建筑大学学报,2013,(02):124.
 Liu Zechang,Yang Naihao,Xu xia,et al.Study on the Temporal and Spatial Distribution of Urban Aerosol Optical Depth and the Relationship between Aerosol Optical Depth and Atmospheric Particle Concentration[J].Journal of Shandong jianzhu university,2013,(02):124.

备注/Memo

备注/Memo:
收稿日期:2020-06-09 基金项目:国家自然科学基金项目(41271413);山东省自然科学基金项目(ZR2018MD008)作者简介:孟飞(1974-),男,教授,博士,主要从事环境遥感与GIS应用等方面的研究。E-mail: lzhmf@sdjzu.edu.cn[*通讯作者]
更新日期/Last Update: 2020-12-23