[1]于明志,*,葛晨,等.真空绝热板纤维芯材等效热导率计算模型[J].山东建筑大学学报,2020,35(05):15-20.[doi:10.12077/sdjz.2020.05.003]
 YU Mingzhi,*,GE Chen,et al.Equivalent thermal conductivity calculation model of laminated fiber core material of vacuum insulation panel[J].Journal of Shandong jianzhu university,2020,35(05):15-20.[doi:10.12077/sdjz.2020.05.003]
点击复制

真空绝热板纤维芯材等效热导率计算模型()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
35
期数:
2020年05期
页码:
15-20
栏目:
研究论文
出版日期:
2020-09-05

文章信息/Info

Title:
Equivalent thermal conductivity calculation model of laminated fiber core material of vacuum insulation panel
文章编号:
1673-7644(2020)05-0015-06
作者:
于明志1*葛晨1刘云苹2胡静1毛煜东1
(1.山东建筑大学 热能工程学院,山东 济南 250101;2.南京市建筑设计研究院有限责任公司,江苏 南京 210014)
Author(s):
YU Mingzhi1* GE Chen1 LIU Yunping2 HU Jing1 MAO Yudong1
( 1. School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China; 2. Nanjing Architectural Design & Research Institute Co., Ltd., Nanjing 210014, China )
关键词:
真空绝热板纤维芯材等效热导率
Keywords:
vacuum insulation panel fiber core material equivalent thermal conductivity
分类号:
TK124
DOI:
10.12077/sdjz.2020.05.003
文献标志码:
A
摘要:
具有较高准确性的真空绝热板芯材等效热导率计算模型是研究和开发高隔热性能芯材的重要理论工具。文章基于叠层纤维芯材的结构特点,利用傅里叶定律和分子动力学基本理论,建立了叠层纤维多孔材料的等效热导率计算模型并随机生成叠层纤维芯材结构,分析了等效热导率随纤维直径、体积分数、温度、压强等的变化规律及其相关机理。结果表明:叠层纤维芯材的等效热导率随纤维直径的减小和压强的降低而变小;等效热导率随纤维体积分数的增加呈非单性调变化,即先减小后增大,并存在着使芯材等效热导率最小的最佳纤维体积分数;当纤维体积分数较小时,等效热导率随温度的增加而增加,而当纤维体积分数较大时,则随温度的增加而减小。
Abstract:
High accuracy calculation models of equivalent thermal conductivity of vacuum insulation panel core material are important theoretical tools for the research and development of high insulation core material. Based on the structural characteristics of laminated fiber core material (LFCM), the equivalent thermal conductivity calculation model of LFCM is established by using the Fourier law and the molecular dynamics. The LFCM structure was generated by computer program, and the thermal conduction performance and mechanism of LFCM equivalent thermal conductivity with fiber diameter, volume fraction, temperature, and pressure were studied. The results show that the LFCM equivalent thermal conductivity decreases with the decrease of fiber diameter and pressure, decreases first and then increases with the increase of fiber volume fraction. There is an optimum fiber volume fraction which makes the equivalent thermal conductivity minimum. The equivalent thermal conductivity increases with the increase of temperature when the fiber volume fraction is small, and decreases with the increase of temperature when the fiber volume fraction is large.

参考文献/References:

[1]Wang B W, Li Z H, Qi X L. Thermal insulation properties of green vacuum insulation panel using wood fiber as core material[J]. Bioresources, 2019, 14(2): 3339-3351. [2]Verma S, Singh H. Vacuum insulation panels for refrigerators[J]. International Journal of Refrigeration, 2020, 112:215-228. [3]Dai Y J, Tang Y Q, Fang W Z, et al. A theoretical model for the effective thermal conductivity of silica aerogel composites[J]. Applied Thermal Engineering, 2018, 128:1634-1645. [4]胡静,喻凡,毛煜东,等.SO2气凝胶绝热材料传热模型及导热性能研究[J]. 山东建筑大学学报, 2018, 33(3):38-43. [5]Zhang H, Fang W Z, Wang X, et al. Thermal conductivity of fiber and opacifier loaded silica aerogel composite[J]. International Journal of Heat and Mass Transfer, 2017, 115:21-31. [6]Zhao J J, Duan Y Y, Wang X D, et al. Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation[J]. International Journal of Heat and Mass Transfer, 2012, 55(19-20): 5196-5204. [7]何超,何雅玲,谢涛,等.基于格子Boltzmann方法的纤维增强气凝胶复合材料等效热导率求解[J]. 工程热物理学报, 2013, 34(4): 742-745. [8]Xie T, He Y L. Heat transfer characteristics of silica aerogel composite materials: Structure reconstruction and numerical modeling[J]. International Journal of Heat and Mass Transfer, 2016, 95: 621-635. [9]方文振,粘权鑫,张虎,等.气凝胶及其纤维复合材料等效导热系数预测[J]. 西安交通大学学报, 2015, 49(7): 25-29. [10]夏德宏,陈勇,郭珊珊.隔热纤维体的热导率分形模型[J]. 热科学与技术, 2008, 7(2): 97-103. [11]夏德宏,郭珊珊,任玲,等.多孔材料热导率通用计算方法[J]. 北京科技大学学报, 2012, 34(6): 707-711. [12]阚安康,吴亦农,徐志峰,等.基于 Lattice-Boltzmann 方法的多孔介质真空绝热特性[J]. 南京航空航天大学学报, 2017, 49(1): 17-23. [13]李辉,杜建华,王浩旭.基于单胞结构的2.5D碳纤维织物增强复合材料等效热导率[J]. 粉末冶金材料科学与工程, 2018, 23(1): 94-100. [14]庞旭明,周剑秋,杨晶歆,等.含孔隙及界面热阻的复合材料有效导热系数[J]. 中国有色金属学报, 2016, 26(8):1668-1674. [15]聂荣华,矫桂琼,王波.二维编织C/SiC陶瓷基复合材料的热传导系数预测[J]. 复合材料学报, 2009, 26(3):169-174. [16]陆思达,高希光,宋迎东.基于有限元法的平纹编织C/SiC复合材料等效导热系数预测方法[J]. 航空动力学报, 2014, 29(7):1574-1582. [17]彭程.SiO2气凝胶隔热复合材料的制备及传热性能研究[D]. 广州: 广州大学, 2012. [18]刘云苹.真空绝热板叠层纤维芯材传热模型及导热特性研究[D]. 济南: 山东建筑大学, 2019. [19]关丽君,田巍.普通耐火纤维材料绝热性能的实验研究[J]. 佳木斯大学学报(自然科学版), 1999, 17(2): 181-183. [20]阚安康,孟闯,郭志鹏,等.真空绝热板导热系数预测模型及实验研究[J]. 真空科学与技术学报, 2016, 36 (8): 935-940.

备注/Memo

备注/Memo:
收稿日期:2020-08-01 基金项目:国家重点研发计划项目(2016YFC0700803-01);山东省自然科学基金项目(ZR2017MEE037)作者简介:于明志(1970-),男,教授,博士,主要从事传热传质、能源利用及节能等方面的研究。E-mail:yumingzhiwh@163.com[*通讯作者]
更新日期/Last Update: 2020-07-21