[1]任瑞波*,薄剑,赵品晖,等.沥青材料分子动力学模拟研究进展[J].山东建筑大学学报,2020,(03):61-68.[doi:10.12077/sdjz.2020.03.010]
 REN Ruibo*,BO Jian,ZHAO Pinhui,et al.Progress in molecular dynamics simulation of asphalt materials[J].Journal of Shandong jianzhu university,2020,(03):61-68.[doi:10.12077/sdjz.2020.03.010]
点击复制

沥青材料分子动力学模拟研究进展()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
期数:
2020年03期
页码:
61-68
栏目:
综合述评
出版日期:
2020-06-15

文章信息/Info

Title:
Progress in molecular dynamics simulation of asphalt materials
文章编号:
1673-7644(2020)03-0061-08
作者:
任瑞波*薄剑赵品晖刘凡恺张正男
(山东建筑大学 交通工程学院,山东 济南 250101)
Author(s):
REN Ruibo* BO Jian ZHAO Pinhui LIU Fankai ZHANG Zhengnan
( School of Transportation Eengineering,Shandong Jianzhu University,Jinan 250101,China )
关键词:
沥青分子动力学模拟研究
Keywords:
asphaltmolecular dynamicssimulation study
分类号:
U414
DOI:
10.12077/sdjz.2020.03.010
文献标志码:
A
摘要:
沥青材料作为沥青路面的主要组成部分,对道路的使用性能和使用寿命至关重要。随着计算技术的迅速发展,分子动力学模拟技术已广泛应用于沥青材料研究领域,其相对于传统实验法,具有适用体系广、工作量小的特点,成为沥青材料微观机理研究的有效手段。文章概述了分子动力学模拟中沥青分子模型的发展,包括沥青平均分子模型和沥青多分子模型,并分析了各种模型的特点和局限性;阐述了分子动力学在模拟沥青的力学性能、老化性能、再生性能、自愈合性能、与改性剂的相容性及与集料之间的粘附性等方面的研究进展,展望了沥青分子模拟未来的发展方向。
Abstract:
As the main component of asphalt pavement, asphalt material is very important to the performance and service life of the road. With the rapid development of computing technology, molecular simulation technology has been widely used in the research field of asphalt materials. Compared with traditional experimental methods, molecular dynamics simulation has the characteristics of wide application system and small workload. It has become an effective means to study the micro-mechanism of asphalt materials. This paper systematically summarizes the development of asphalt molecular model in molecular dynamics simulation, including asphalt average molecular model and asphalt multi-molecular model, and analyzes the characteristics and limitations of various models. This paper describes the research progress of molecular dynamics in simulating the mechanical properties, aging performance, regeneration performance, self-healing performance, compatibility with modifiers and adhesion to aggregates of asphalt, and looks forward to the future development direction of asphalt molecular simulation.

参考文献/References:

[1]Yao H, You Z P, Li L, et al. Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy[J]. Construction And Building Materials, 2013, 38:327-337. [2]彭博,彭蓉蓉,孙明志.岩沥青化学组成及微观结构特征研究[J].公路交通科技(应用技术版),2019,15(12):128-130. [3]李强,熊智翔.老化沥青物理力学性能与化学组分变化预估研究综述[J].科技视界,2018(15):89-91. [4]卢世清.沥青混凝土路面施工工艺及质量探讨[J].建材世界,2019,40(6):34-37. [5]杨震,张肖宁,虞将苗.沥青老化前后微观与宏观力学性能的对比研究[J].建筑材料学报,2018,21(2):335-339. [6]禤炜安,熊剑平,王彬,等.不同沥青材料微观结构与自愈合特性研究[J].新型建筑材料,2019,46(8):30-33,37. [7]Hoover W G. Canonical dynamics:Equilibrium phase-space distr-ibutions[J]. Physical Review A, 1985, 31(3): 1695. [8]Hou Y, Wang L, Wang D, et al. Characterization of bitumen micro-mechanical behaviors using AFM, phase dynamics theory and MD simulation[J]. Materials, 2017, 10(2): 208. [9]Jennings P W, Pribanic J A, Desando M A, et al. Binder characterization and evaluation by nuclear magnetic resonance spectroscopy[R]. Washington: Strategic Highway Research Program National Research Council, 1993. [10]Zhang L, Greenfield M L. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation[J]. The Journal of chemical physics, 2007, 127(19):194502. [11]Artok L, Su Y, Hirose Y, et al. Structure and reactivity of petroleum-derived asphaltene[J]. Energy & Fuels, 1999, 13(2): 287-296. [12]Groenzin H, Mullins O C. Molecular size and structure of asphaltenes from various sources[J]. Energy & Fuels, 2000, 14(3): 677-684. [13]Storm D A, Edwards J C, Decanio S J, et al. Molecular Representations of Ratawi and Alaska North Slope Asphaltenes Based on Liquid- and Solid-State NMR[J]. Energy & Fuels, 1994, 8(3):561-566. [14]Yao H, Dai Q, You Z. Molecular dynamics simulation of physicochemical properties of the asphalt model[J]. Fuel, 2016, 164:83-93. [15]唐伯明, 丁勇杰, 朱洪洲, 等. 沥青分子聚集状态变化特征研究[J]. 中国公路学报, 2013, 26(3):50-56,76. [16]Yang L, Wang L. Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading[J]. International Journal of Pavement Engineering, 2010, 11(5):393-401. [17]Greenfield M L. Molecular modelling and simulation of asphaltenes and bituminous materials[J]. International Journal of Pavement Engineering, 2011, 12(4):325-341. [18]Greenfield M L, Zhang L. Developing model asphalt systems using molecular simulation: final model[R]. Kingston: University of Rhode Island,Transportation Center, 2009. [19]Hansen J S, Lemarchand C A, Nielsen E, et al. Four-component united-atom model of bitumen[J]. Journal of Chemical Physics, 2013, 138(9):094508. [20]Hubbard R L, Stanfield K E. Determination of asphaltenes, oils, and resins in asphalt[J]. Chemistry & Technology of Fuels & Oils, 2002, 20(5):107-109. [21]Li D D, Greenfield M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115:347-356. [22]范维玉, 赵品晖, 康剑翘, 等. 分子模拟技术在乳化沥青研究中的应用[J]. 中国石油大学学报(自然科学版), 2014, 38(6):179-185. [23]朱建勇, 何兆益. 抗剥落剂与沥青相容性的分子动力学研究[J]. 公路交通科技, 2016, 33(1):34-40. [24]董喜贵, 雷群芳, 俞庆森. 石油沥青质的NMR测定及其模型分子推测[J]. 燃料化学学报, 2004(6):668-672. [25]王大喜, 赵玉玲, 潘月秋, 等. 石油胶质结构性质的量子化学研究[J]. 燃料化学学报, 2006(6):690-694. [26]Kowalewski I, Vandenbroucke M, Huc A Y, et al. preliminary results on molecular modeling of asphaltenes using structure elucidation programs in conjunction with molecular simulation programs[J]. Energy & Fuels, 1996, 10(1):97-107. [27]邱延峻, 苏婷, 郑鹏飞, 等. 基于分子模拟的沥青胶结料物理老化机理研究[EB/OL]. (2019-08-30)[2020-03-25].http://kns.cnki.net/kcms/detail/31.1764.tu.20190829.1813.002.html. [28]江志义.道路使用条件对路面结构力学响应的影响[J].公路与汽运,2016(6):111-115. [29]Hou Y, Wang L, Wang D, et al. Using a molecular dynamics simulation to investigate asphalt nano-cracking under external loading conditions[J]. Applied Sciences, 2017, 7(8):770. [30]Menapace I, Masad E,Bhasin A. Effect of treatment temperature on the microstructure of asphalt binders: insights on the development of dispersed domains[J]. Journal of Microscopy, 2016, 262(1):12-27. [31]Xu G, Wang H. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate[J]. Construction & Building Materials, 2016, 121:246-254. [32]刘芳, 夏洪山, 艾军, 等. 基于氧化动态模型的沥青热氧老化性能预测[J]. 湖南大学学报(自然科学版), 2018, 45(1):136-141. [33]Ding Y, Huang B, Shu X, et al. Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders[J]. Fuel, 2016,174:267-273. [34]Xu G, Wang H. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188:1-10. [35]Pan J, Tarefder R A. Investigation of asphalt aging behaviour due to oxidation using molecular dynamics simulation[J]. Molecular Simulation, 2016, 42(8):667-678. [36]Pan J, Hossain M, Tarefder R. Combined effects of oxidative aging and moisture inclusion on asphalt binder using Molecular Dynamic simulation[M]. Florida: CRC Press, 2014. [37]吴浩楠, 张国宏, 李萍, 等. 沥青道路再生技术现状与发展[J]. 中国建材科技, 2019, 28(4):50-53,65. [38]范一平. 再生沥青混合料路用性能及路面修补应用研究[J]. 山西交通科技, 2019(4):11-14. [39]王志美, 谢世平. 再生剂对老化沥青性能的影响研究[J]. 新型建筑材料, 2019, 46(9):24-27,47. [40]Xu G, Wang H. Diffusion and interaction mechanism of rejuvenating agent with virgin and recycled asphalt binder: a molecular dynamics study[J]. Molecular Simulation, 2018, 44(17):1433-1443. [41]Xiao Y, Li C, Wan M, et al. Study of the diffusion of rejuvenators and its effect on aged bitumen binder[J]. Applied Sciences, 2017, 7(4):397. [42]胡明君,孙钟良,张言,等.基于相场理论的沥青自愈合微观进程与机理研究进展[J].石油沥青,2018,32(1):10-21. [43]高新文, 刘朝晖. 生物油再生沥青自愈合机理分析[J]. 中国公路学报, 2019, 32(4):235-242. [44]朱建勇. 沥青胶结料自愈合行为的分子动力学模拟[J]. 建筑材料学报, ,2018, 21(3):433-439. [45]许建业, 刘富良, 林添坂, 等. 沥青混凝土疲劳损伤自愈合行为研究进展(4)——沥青自愈合分子动力学模拟[J]. 石油沥青, 2016, 30(2):61-66. [46]周艳, 李佩林. 基于分子模拟技术的沥青自愈合性能研究[J]. 山西建筑, 2013, 39(6):83-85. [47]孙艺涵. 沥青及沥青混合料自愈合特性研究[D]. 武汉:武汉理工大学,2017. [48]赵品晖, 范维玉, 董爽, 等. 阴离子乳化沥青稳定性与油水界面张力的关系[J]. 中国石油大学学报(自然科学版), 2012,36(3):175-179. [49]苏曼曼, 张洪亮, 张永平, 等. SBS与沥青相容性及力学性能的分子动力学模拟[J]. 长安大学学报(自然科学版), 2017, 37(3):24-32. [50]王岚, 张乐, 刘旸. 老化前后沥青与胶粉相容性的分子动力学研究[J]. 建筑材料学报, 2019, 22(3):474-479. [51]赵品晖. 乳化沥青体系形成与稳定的影响因素研究[D]. 青岛:中国石油大学(华东),2013. [52]许勐. 基于分子动力学模拟的沥青再生剂扩散机理分析[D]. 哈尔滨:哈尔滨工业大学,2015. [53]郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究[D]. 哈尔滨:哈尔滨工业大学,2016. [54]Wang H, Lin E, Xu G. Molecular dynamics simulation of asphalt-aggregate interface adhesion strength with moisture effect[J]. International Journal of Pavement Engineering, 2017, 18(5):414-423. [55]Yao H, Dai Q, You Z, et al. Evaluation of contact angle between asphalt binders and aggregates using molecular dynamics (MD) method[J]. Construction And Building Materials, 2019, 212:727-736. [56]Xu G, Wang H. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112:161-169. [57]方伟锋. LM-S改性剂提高石油沥青与石料的粘附性能研究[D]. 上海:华东理工大学,2018.

相似文献/References:

[1]时术华 张庆刚.HIV-1蛋白酶与TMC114结合口袋内水分子作用的研究[J].山东建筑大学学报,2010,(04):359.
 SHI Shu-hua,ZHANG Qing-gang.Study on the function of water molecules buried within binding pocket of HIV-1 protease and TMC114[J].Journal of Shandong jianzhu university,2010,(03):359.
[2]冯文娟,陈莹.金纳米线拉伸行为的分子动力学模拟[J].山东建筑大学学报,2010,(04):434.
 FENG Wen-juan,CHEN Ying.Molecular dynamics simulation of gold nanowires under tensile loading[J].Journal of Shandong jianzhu university,2010,(03):434.
[3]赵品晖,韩科超,时敬涛,等.沥青组成结构对沥青表面能的影响研究[J].山东建筑大学学报,2017,(05):435.[doi:10.12077/sdjz.2017.32.05.005]
 Zhao Pinhui,Han Kechao,Shi Jingtao,et al.Effects of composition structure of asphalt on its surface energy[J].Journal of Shandong jianzhu university,2017,(03):435.[doi:10.12077/sdjz.2017.32.05.005]

备注/Memo

备注/Memo:
收稿日期:2020-03-25 基金项目:国家自然科学基金项目(51608511)作者简介:任瑞波(1967-),男,教授,博士,主要从事沥青路面材料、沥青路面力学分析等方面的研究. E-mail:renruibochina@126.com[*通讯作者]
更新日期/Last Update: 2020-06-18