[1]张艳勇,陈宝明*,李佳阳.基于LBM研究骨架对相变材料融化蓄热的影响[J].山东建筑大学学报,2020,(02):53-61.[doi:10.12077/sdjz.2020.02.008]
 ZHANG Yanyong,CHEN Baoming*,LI Jiayang.Study on the influence of skeleton on the melting and heat storage of phase change materials based on LBM[J].Journal of Shandong jianzhu university,2020,(02):53-61.[doi:10.12077/sdjz.2020.02.008]
点击复制

基于LBM研究骨架对相变材料融化蓄热的影响()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
期数:
2020年02期
页码:
53-61
栏目:
研究论文
出版日期:
2020-04-15

文章信息/Info

Title:
Study on the influence of skeleton on the melting and heat storage of phase change materials based on LBM
文章编号:
1673-7644(2020)02-0053-09
作者:
张艳勇陈宝明*李佳阳
(山东建筑大学 热能工程学院,山东 济南 250101)
Author(s):
ZHANG Yanyong CHEN Baoming* LI Jiayang
( School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China )
关键词:
三周期极小曲面:固体骨架固液相变格子玻尔兹曼方法两区域模型
Keywords:
TPMS solid skeleton solid-liquid phase transition lattice Boltamann method two-zone model
分类号:
TU996
DOI:
10.12077/sdjz.2020.02.008
文献标志码:
A
摘要:
相变储能材料的导热系数低已成为限制其应用的主要问题,在相变材料中添加高导热的固体骨架是解决这一问题行之有效的方法。文章采用三周期极小曲面方法生成固体骨架及描述糊状区的两区域模型,基于格子玻尔兹曼方法(LBM),从孔隙尺度分析了相变材料内填充高导热系数的固体骨架固液相变融化蓄热的变化规律。结果表明:生成的骨架能有效地预测复合相变材料的融化蓄热过程;相变材料的融化蓄热速率与其自然对流强度和有效导热系数有关,对于纯相变材料的融化过程,无量纲参数瑞利数越大自然对流越强,其融化速率越快;当骨架和相变材料导热系数比为10、50、100条件下,融化时间分别缩短了12%、28%、31%;多孔介质骨架孔隙率越低,复合相变材料的有效导热系数就越高,其融化蓄热速率也越高。
Abstract:
The low thermal conductivity of phase change materials (PCMs) has become the main problem limiting its application. Adding high thermal conductivity solid skeleton to PCMs is an effective way to solve this problem. Based on the lattice Boltzmann method (LBM), a two region model describing the mushy region is used to analyze the change rule of the solid-liquid phase change melting and heat storage of the solid skeleton filled with high thermal conductivity from the pore scale. The results show that the generated skeleton can effectively predict the melting and heat storage process of composite phase change materials, and the melting and heat storage rate of phase change materials is related to their natural convection strength and effective thermal conductivity. For the melting process of pure phase change materials, there are no dimensional parameters The higher the Ra number is, the stronger the natural convection is, and the faster the melting rate is; the higher the thermal conductivity of the solid skeleton, the greater the influence on the melting and heat storage of the phase change material. When the thermal conductivity is 10, 50 and 100, the melting time is shortened by 12%, 28% and 31% respectively; the lower the porosity of the porous skeleton, the higher the effective thermal conductivity of the composite phase change material, and the higher the melting and heat storage rate is.

参考文献/References:

[1]杨磊, 姚远, 张宝云, 等. 有机相变储能材料的研究进展[J]. 新能源进展, 2019,7(3):464-472. [2]杨兆晟, 张群力, 张文婧, 等. 中温相变蓄热系统强化传热方法研究进展[J]. 化工进展, 2019,38(10):4389-4402. [3]Rehman T, Ali H M, Janjua M M, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673. [4]Tao Y B, He Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. [5]杨佳霖, 杜小泽, 杨立军, 等. 填充泡沫金属的熔盐相变蓄热过程模拟[J]. 工程热物理学报, 2014(11):2256-2260. [6]程友良, 韩健, 张金生. 相变蓄热单元蓄/放热过程的数值模拟研究[J]. 太阳能学报, 2018(5):1237-1244. [7]宗肖, 吴桂龙, 冯娟娟, 等. 泡沫金属对高温熔盐熔化过程的影响[J]. 科学通报, 2014, 59(8):722-726. [8]Akhmetov B, Navarro M E, Seitov A, et al. Numerical study of integrated latent heat thermal energy storage devices using nanoparticle-enhanced phase change materials[J]. Solar Energy, 2019, 194: 724-741. [9]徐蔚雯, 章学来, 华维三, 等. 微纳米粒子对辛酸-肉豆蔻酸相变储能体系热物性的影响[J]. 太阳能学报, 2018, 39(4): 933-939. [10]Hu X, Gong X. Pore-scale numerical simulation of the thermal performance for phase change material embedded in metal foam with cubic periodic cell structure[J]. Applied Thermal Engineering, 2019, 151: 231-239. [11]成骥. 泡沫铝/石蜡复合相变材料蓄热性能数值研究[D]. 北京:北京交通大学, 2016. [12]Abishek S, King A J C, Nadim N, et al. Effect of microstructure on melting in metal-foam/paraffin composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2018, 127:135-144. [13]陈振乾, 顾明伟, 施明恒. 泡沫金属内石蜡相变凝固的数值模拟[J]. 热科学与技术, 2010,9(2): 106-111. [14]杲东彦, 陈振乾, 陈凌海. 开孔泡沫铝内石蜡融化相变过程的可视化实验研究[J]. 化工学报, 2014, 65(S1):95-100. [15]姚元鹏, 吴慧英, 刘振宇, 等. 泡沫铜强化石蜡相变蓄热特性的数值分析[J]. 热科学与技术, 2015(2): 87-93. [16]杲东彦, 陈振乾. 孔密度对泡沫金属基相变材料融化传热的影响—格子Boltzmann方法数值模拟[J]. 太阳能学报, 2012, 33(9):1604-1609. [17]杲东彦, 陈振乾, 孙东科. 泡沫金属内相变材料融化的格子 Boltzmann 方法孔隙尺度模拟研究[J]. 工程热物理学报, 2016, 37(2): 385-389. [18]Chen Z Q, Gao D, Shi J. Experimental and numerical study on melting of phase change materials in metal foams at pore scale[J]. International Journal of Heat and Mass Transfer, 2014, 72: 646-655. [19]宋林泉, 陈宝明, 郜凯凯. 基于LBM的多孔骨架热物性对固液相变的影响研究[J]. 山东建筑大学学报, 2017,32(4): 54-62. [20]Tao Y B, You Y, He Y L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93: 476-485. [21]He Y L, Liu Q, Li Q, et al. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 160-197. [22]Chen B M, Song L Q, Gao K K, et al. Two zone model for mushy region of solid-liquid phase change based on Lattice Boltzmann method[J]. International Communications in Heat and Mass Transfer, 2018, 98: 1-12. [23]陈宝明, 郜凯凯, 姜昊. 固—液相变糊状区的格子Boltzmann研究[J]. 工程热物理学报,2017,38(11):2453-2460. [24]张艳勇, 陈宝明, 李佳阳,等. 基于孔隙尺度的多孔骨架对固液相变的影响[J]. 山东建筑大学学报, 2019,34(6): 56-62. [25]徐伟强 袁修干, 李贞. 泡沫金属基复合相变材料的有效导热系数研究[J]. 功能材料, 2009, 8: 1329-1332. [26]Sundarram S S, Li W. The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams[J]. Applied thermal engineering, 2014, 64(1-2): 147-154. [27]Annapragada S R, Murthy J Y, Garimella S V. Permeability and thermal transport in compressed open-Celled foams[J]. Numerical Heat Transfer, Part B: Fundamentals, 2008, 54(1): 475-484. [28]Kapfer S C, Hyde S T, Mecke K, et al. Minimal surface scaffold designs for tissue engineering[J]. Biomaterials, 2011, 32(29): 6875-6882. [29]Elomaa L, Teixeira S, Hakala R, et al. Preparation of poly(epsilon-caprolactone)-based tissue engineering scaffolds by stereolithography[J]. Acta Biomater, 2011, 7(11): 3850-3856. [30]Hu X, Zhang Y. Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux[J]. International Journal of Heat and Mass Transfer, 2002, 45(15): 3163-3172. [31]郭照立, 郑楚光. 格子Boltzmann方法的原理及应用 [M]. 北京:科学出版社, 2009. [32] Jany P, Bejan A. Scales of melting in the presence of natural convection in a rectangular cavity filled with porous medium[J]. Journal of Heat Transfer, 1988, 110(2):526-529. [33]Jany P, Bejan A. Scaling theory of melting with natural convection in an enclosure[J]. International Journal of Heat and Mass Transfer, 1988, 31(6): 1221-1235. [34]House J M, Beckermann C, Smith T F. Effect of a centered conducting body on natural convection heat transfer in an enclosure[J]. Numerical Heat Transfer, 1990, 18(2): 213-225. [35]Yoon H S, Jung J H, Lee H S, et al. Effect of thermal boundary condition of an inner cube on three-dimensional natural convection in a cubical[J]. Journal of Mechanical Science and Technology, 2015, 29(10): 4527-4543.

相似文献/References:

[1]宋林泉,陈宝明,*,等.基于LBM的多孔骨架热物性对固液相变的影响研究[J].山东建筑大学学报,2017,(04):356.[doi:10.12077/sdjz.2017.04.009]
 Song Linquan,Chen Baoming,*,et al.Research on the influence of solid liquid phase change in porous skeleton media based on LBM method[J].Journal of Shandong jianzhu university,2017,(02):356.[doi:10.12077/sdjz.2017.04.009]
[2]张艳勇,陈宝明*,李佳阳,等.基于孔隙尺度的多孔骨架对固液相变的影响[J].山东建筑大学学报,2019,(06):56.[doi:10.12077/sdjz.2019.06.010]
 ZHANG Yanyong,CHEN Baoming*,LI Jiayang,et al.Study on the influence of porous skeleton on solid-liquid phase change based on pore size[J].Journal of Shandong jianzhu university,2019,(02):56.[doi:10.12077/sdjz.2019.06.010]

备注/Memo

备注/Memo:
收稿日期:2020-03-04 基金项目:国家自然科学基金面上项目(51976111)作者简介:张艳勇(1991-),男,在读硕士,主要从事多孔介质内流动换热等方面的研究.E-mail: 15064158626@163.com 通讯作者*:陈宝明(1963-),男,教授,博士,主要从事复杂体系中的传热、传质等方面的研究.E-mail: chenbm@sdjzu.edu.cn
更新日期/Last Update: 2020-03-22