[1]于江波,*,刘怡彤,等.基于Lyapunov稳定性的风机速度渐近跟踪控制[J].山东建筑大学学报,2020,35(05):35-41.[doi:10.12077/sdjz.2020.05.006]
 YU Jiangbo,*,LIU Yitong,et al.The asymptotic tracking control for fan speed control systems based on Lyapunov stability[J].Journal of Shandong jianzhu university,2020,35(05):35-41.[doi:10.12077/sdjz.2020.05.006]
点击复制

基于Lyapunov稳定性的风机速度渐近跟踪控制
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
35
期数:
2020年05期
页码:
35-41
栏目:
研究论文
出版日期:
2020-09-05

文章信息/Info

Title:
The asymptotic tracking control for fan speed control systems based on Lyapunov stability
文章编号:
1673-7644(2020)05-0035-07
作者:
于江波1*刘怡彤1石啊莲2
(1.山东建筑大学 理学院,山东 济南 250101;2.齐鲁师范学院 数学学院,山东 济南 250200)
Author(s):
YU Jiangbo1* LIU Yitong1 SHI Alian2
( 1. School of Science, Shandong Jianzhu University, Jinan 250101, China; 2. School of Mathematics, Qilu Normal University, Jinan 250200, China )
关键词:
李雅普诺夫稳定性非线性函数风机速度控制系统反步法
Keywords:
Lyapunov stability nonlinear functions fan speed control system backstepping method
分类号:
93D15
DOI:
10.12077/sdjz.2020.05.006
文献标志码:
A
摘要:
在风机系统速度控制器设计和闭环系统稳定性分析时,应用李雅普诺夫(Lyapunov)稳定性理论可以有效地提高风机速度控制系统的控制性能。文章基于李雅普诺夫稳定性理论研究了一类转动负载为不确定非线性函数的风机速度控制系统,通过引入辅助变量估计未知参数并应用反步法设计速度控制器,探索了风机速度对于给定参考速度的全局渐近跟踪控制问题。结果表明:基于李雅普诺夫稳定性理论证明了所设计的速度控制器能够实现对任意给定速度的渐近跟踪控制并达到稳定状态;Matlab仿真结果验证了控制算法的有效性,控制方案对风机速度控制系统中存在的未知参数具有良好的稳定性。
Abstract:
Lyapunov stability theory plays an important role in improving the control performance for the fan speed control system, and provides an effective tool for the speed controller design and stability analysis in closed-loop system. Assuming that the load torque is a nonlinear uncertain function in a fan speed control system, with the help of the introduced auxiliary variables estimating the unknown parameters, the backstepping design procedure is invoked to construct the armature current and achieve the asymptotic tracking control for any given reference speed. The Lyapunov stability can be realized for the closed-loop system. The effectiveness of the proposed control method is verified by computer simulations on Matlab. The simulation results demonstrate that the proposed control scheme could realize the asymptotic tracking control for any given speed in the case of nonlinear load torque and moreover is stable for the unknown parameters in the fan speed control systems.

参考文献/References:

[1]黄琳. 稳定性与鲁棒性的理论基础[M]. 北京: 科学出版社, 2003. [2]刘洋,井元伟,刘晓平,等.非线性系统有限时间控制研究综述[J].控制理论与应用,2020,37(1):1-12. [3]虞继敏,蔡林沁,唐晓铭,等. 非线性系统控制理论与技术[M]. 北京:人民邮电出版社, 2018. [4]王高雄, 周之铭. 常微分方程[M]. 北京: 高等教育出版社, 2006. [5]方道元, 薛儒英. 常微分方程[M]. 北京: 高等教育出版社, 2017. [6]满永超, 刘允刚. 高阶不确定非线性系统线性状态反馈自适应控制设计[J]. 自动化学报, 2014, 40(1):24-32. [7]王继忠, 于江波, 张长学. 一类不确定非线性系统的鲁棒调节控制[J]. 山东建筑大学学报, 2016, 31(6):593-598. [8]Huang J S, Wang W, Wen C Y, et al. Adaptive control of a class of strict-feedback time-varying nonlinear systems with unknown control coefficients[J]. Automatica, 2018, 93(7):98-105. [9]Liu Y, Liu X P, Jing Y W. Adaptive fuzzy finite-time stability of uncertain nonlinear systems based on prescribed performance[J]. Fuzzy Sets and Systems, 2019, 374(11):23-39. [10]赵彦, 于江波, 田洁. 一类非线性系统的输出反馈跟踪控制[J]. 系统科学与数学, 2014, 34(7):853-861. [11]Freeman R A, Kokotovic P V. Robust nonlinear control design[M]. Boston: Birkhauser, 1996. [12]Jiang Z P, Mareels I. Robust nonlinear integral control[J]. IEEE Transactions on Automatic Control, 2001, 46(8):1336-1342. [13]Wu Y Q, Yu J B, Zhao Y. Output feedback regulation control for a class of cascade nonlinear systems and its application to fan speed control[J]. Nonlinear Analysis: Real World Applications, 2012, 13(3):1278-1291. [14]Wu Y Q, Yu J B, Zhang Z C. Output feedback regulation control for a class of cascade nonlinear systems by time-varying Kalman observer[J]. International Journal of Robust and Nonlinear Control, 2019, 29(7):2149-2170. [15]Yu J B, Wu Y Q. Global robust tracking control for a class of cascaded nonlinear systems using a reduced-order extended state observer[J]. Nonlinear Dynamics, 2018, 94(2):1277-1289. [16]鲁芳, 孙美美, 周磊. 直流电动机的非线性控制研究[J]. 现代电子技术, 2011, 34(24):202-205. [17]闵颖颖, 刘允刚. Barbalat引理及其在系统稳定性分析中的应用[J]. 山东大学学报(工学版), 2007, 37(1):51-55.

备注/Memo

备注/Memo:
收稿日期:2020-07-27 基金项目:国家自然科学基金项目(61803228); 中国博士后科学基金项目(2017M612271) 作者简介:于江波(1983-), 男, 副教授, 博士,主要从事非线性微分方程定性理论、非线性控制系统等方面的研究。E-mail:jbyu@sdjzu.edu.cn[*通讯作者]
更新日期/Last Update: 2020-07-21