[1]毛煜东*,吕慧丽,孙浩森,等.超快激光加热薄膜的格子玻尔兹曼模拟[J].山东建筑大学学报,2019,34(06):16-20.[doi:10.12077/sdjz.2019.06.003]
 MAO Yudong*,LV Huili,SUN Haosen,et al.Using the Lattice Boltzmann method to simulate the heat conduction in a thin film induced by ultra-fast laser[J].Journal of Shandong jianzhu university,2019,34(06):16-20.[doi:10.12077/sdjz.2019.06.003]
点击复制

超快激光加热薄膜的格子玻尔兹曼模拟()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
34
期数:
2019年06期
页码:
16-20
栏目:
研究论文
出版日期:
2019-12-01

文章信息/Info

Title:
Using the Lattice Boltzmann method to simulate the heat conduction in a thin film induced by ultra-fast laser
文章编号:
1673-7644(2019)06-0016-05
作者:
毛煜东*吕慧丽孙浩森陈明九于明志
(山东建筑大学 热能工程学院,山东 济南 250101)
Author(s):
MAO Yudong*LV HuiliSUN Haosenet al.
(School of Thermal Engineering,Shandong Jianzhu University,Jinan 250101,China)
关键词:
超快激光薄膜格子玻尔兹曼方法热波
Keywords:
ultra-fast laser thin film Lattice Boltzmann method thermal wave
分类号:
TK124
DOI:
10.12077/sdjz.2019.06.003
文献标志码:
A
摘要:
超快激光加热技术已广泛用于微/纳米器件中,传统的傅立叶导热定律不能有效地描述超快速和超小尺寸的传热问题,因此研究超快激光加热纳米尺度薄膜的传热过程,对微/纳米器件中散热器制造具有重要的理论意义。文章采用格子玻尔兹曼方法(LBM)数值模拟激光加热薄膜的热传导过程,并与傅立叶定律获得的结果进行比较分析。结果表明:在系统特征尺度和分子平均自由程相当的过渡区,LBM结果中当薄膜受到激光扰动后其内部的热量传递会出现波状行为,但傅立叶定律的结果却无法展示这一现象;利用 LBM 数值模拟激光加热硅薄膜的一维导热问题,发现克努森数对薄膜内无量纲能量密度的分布具有重要的影响;当利用超快激光对加热硅薄膜的2个表面同时加热时,会产生2组沿相反方向传播的热波,当其交汇时,彼此的碰撞会引发能量的显著提升。
Abstract:
Ultra-fast laser heating technology has been widely used in the micro-/nano-devices. The classical Fourier law cannot simulate the ultrafast and ultra-small size heat transfer problems. Therefore it is of great importance to investigate the heat transfer induced by ultra-fast laser heating of nano-devices. The Lattice Boltzmann method (LBM) is employed to simulate the heat conductions of laser heating appeared in a thin film,and compared the results obtained by the Fourier law and LBM withthe results obtained by the LBM. The results show that a wavelike behavior is appeared in the film when it is heated by a laser, but this behavior cannot be found in Fourier prediction. The temperatures within the film may be seriously underestimate by Fourier law when the system characteristic scale is the same with the molecular mean free path. Moreover, simultaneously heating both surfaces of a thin silicon film by ultra-fast lasers can induce two thermal waves traveling in the opposite directions, and when they meet together, the energy will enhance significantly.

参考文献/References:

[1]戴军,杨莉,张尧成,等. AZ31镁合金和铝基复合材料的脉冲激光焊接[J]. 激光与光电子学进展, 2018, 55(5): 267-272. [2]周翔,段军,陈航,等. 水辅助激光无重铸层钻孔Al2O3陶瓷实验研究[J]. 激光技术, 2018, 42(2): 271-275. [3]程伟,武美萍,唐又红,等. 42CrMo合金表面单道轨迹激光熔覆工艺研究[J]. 激光与光电子学进展, 2019, 56(4): 158-165. [4]马亚运,韩绍坤,翟宇,等. 一种基于光纤阵列的激光照明方法[J]. 光学技术, 2018, 44(2): 201-205. [5]Li C H, Luana D C, Zhu Q H, et al. A universal theoretical model for thermal integration in materials during repetitive pulsed laser-based processing[J]. Optik-International Journal for Light and Electron Optics, 2018,171:728-736. [6]高辽远,周建忠,孙奇,等. 激光清洗铝合金漆层的数值模拟与表面形貌[J]. 中国激光, 2019, 46(5): 335-343. [7]李阳龙,吴凌远,沈欢欢,等. 基于光场调制的纳秒激光图案化石墨烯研究[J]. 强激光与粒子束, 2018, 30(12): 152-155. [8]姚建华,吴丽娟,李波,等. 超音速激光沉积技术:研究现状及发展趋势[J]. 中国激光, 2019, 46(3): 9-19. [9]Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals[J]. Journal of Heat Transfer, 1993, 115: 835-841. [10]Pispati S, Chen C, Geer J, et al. Multiscale thermal device modeling using diffusion in the Boltzmann Transport Equation[J]. International Journal of Heat and Mass Transfer, 2013, 64: 286-303. [11]王秋军,徐红玉,宋亚勤,等. 微尺度热传导理论及金属薄膜的短脉冲激光加热[J].微纳电子技术, 2003(11): 18-23. [12]徐红玉,张元冲,宋亚勤,等. 脉冲激光加热薄膜微尺度热传递研究进展[J]. 物理学进展, 2004(2): 152-162. [13]Escobar R A, Amon C H. Thin film phonon heat conduction by the dispersion lattice Boltzmann method[J]. Journal of Heat Transfer, 2008, 130 (9): 257-266. [14]华钰超, 曹炳阳, 过增元.弹道扩散导热的热质模型[J]. 科学通报, 2015, 60(24): 2344-2348. [15]张珂, 李凌, 任松涛, 等. 纳米薄膜激光照射过程的格子波尔兹曼方法模拟[J]. 光学学报, 2016, 36(10): 393-399. [16]Tzou D Y, Chiu K S. Temperature-dependent thermal lagging in ultrafast laser heating[J]. International Journal of Heat and Mass Transfer, 2001, 44 (9): 1725-1734.

相似文献/References:

[1]刘亚,刘科高.掺杂改善CuInSe2薄膜光伏特性的研究进展[J].山东建筑大学学报,2011,(02):170.
 LIU Ya LIU Ke-gao.Recent progress in doping to improve the photoelectrical properties of CuInSe2 thin film[J].Journal of Shandong jianzhu university,2011,(06):170.
[2]毛煜东*,吕慧丽,孙浩森,等.基于改进CV模型模拟超快激光加热过程[J].山东建筑大学学报,2020,(02):33.[doi:10.12077/sdjz.2020.02.005]
 MAO Yudong*,LYU Huili,SUN Haosen,et al.Simulation of ultrafast laser heating process based on the improved CV model[J].Journal of Shandong jianzhu university,2020,(06):33.[doi:10.12077/sdjz.2020.02.005]

备注/Memo

备注/Memo:
收稿日期:2019-11-03 基金项目:山东省自然科学基金项目(ZR2017BEE052);国家重点研发计划项目(2016YFC0700803)作者简介:毛煜东(1989-),男,副教授,博士,主要从事微纳米尺度传热等方面的研究.E-mail: maoyudong@sdjzu.edu.cn[*通讯作者]
更新日期/Last Update: 2019-12-05