[1]张浩,*,包晓琳,等.幂律流体在螺旋管内的流动特性分析[J].山东建筑大学学报,2020,(01):17-23.[doi:10.12077/sdjz.2020.01.003]
 ZHANG Hao,*,BAO Xiaolin,et al.Analysis of flow characteristics of power-law fluid in helical tube[J].Journal of Shandong jianzhu university,2020,(01):17-23.[doi:10.12077/sdjz.2020.01.003]
点击复制

幂律流体在螺旋管内的流动特性分析()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
期数:
2020年01期
页码:
17-23
栏目:
研究论文
出版日期:
2020-02-15

文章信息/Info

Title:
Analysis of flow characteristics of power-law fluid in helical tube
文章编号:
1673-7644(2020)01-0017-07
作者:
张浩12*包晓琳1康艳蓓1
(1.山东建筑大学 热能工程学院,山东 济南 250101;2.山东省绿色建筑协同创新中心,山东 济南 250101)
Author(s):
ZHANG Hao12* BAO Xiaolin1 KANG Yanbei1
(1. School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China; 2. Shandong Co-Innovation Center of Green Building, Jinan 250101, China)
关键词:
幂律流体螺旋管截面形状雷诺数相对粗糙度
Keywords:
power-law fluid spiral tube section shape Reynolds number relative roughness
分类号:
O373
DOI:
10.12077/sdjz.2020.01.003
文献标志码:
A
摘要:
能源开采利用过程中所涉及的流体绝大多数为非牛顿幂律流体,分析幂律流体在螺旋管内的流动特性,可为工业生产提供理论参考。文章选取6种尺寸螺旋管模型,以幂律流体黄原胶溶液为介质,对绝热边界条件下管内流动特性进行数值模拟,对比分析不同工况下沿程阻力系数λ的变化趋势,探讨多个因素对流动特性的影响规律。结果表明:螺旋管内流体层流流动时,λ随雷诺数增加而减小,其减小的趋势随着雷诺数增加逐渐趋于平缓;螺旋管内流体湍流流动时,λ随相对粗糙度增加而增加,在相对粗糙度较小时,λ值先随雷诺数增加而减小,后随雷诺数增加而增加;相较于无量纲螺距,螺旋管曲率变化对流动阻力的影响更明显;矩形截面螺旋管道中,幂律流体层流、湍流流动所产生的λ均远大于当量直径相同的圆形截面螺旋管道。
Abstract:
Non-Newtonian power-law fluid flow widely exists in energy exploitation and utilization. By analyzing the flow characteristics in helical tubes, it can provide theoretical reference for the industrial production. Six sizes of helical tube models are selected to simulate the flow characteristics in adiabatic boundary conditions using xanthan gum solution as the research medium. The variation trend of drag coefficient λ along different working conditions was compared and analyzed. The effects of several factors affecting flow characteristics were discussed. The results show that the λ decreases with the increase of Reynolds number in laminar flow. The variation of λ along turbulence is more obvious in the region with larger relative roughness. Especially in the region with transition roughness, the λ decreases firstly and then increases with the increase of Reynolds number. Compared with the dimensionless pitch, the curvature has a greater influence on the flow in the tube, and the variation of the λ of laminar flow and turbulence is just the opposite. As far as section shape is concerned, the resistance of rectangular helical pipe is worse than that of circular helical pipe, and the flow resistance of power-law fluid in rectangular helical pipe is much greater than that of circular pipe with the same equivalent diameter.

参考文献/References:

[1]王克亮,崔海清,吴辅兵,等.螺旋管道内幂律流体流动数值模拟[J].石油学报,2005(4):93-96. [2]康艳蓓,张浩,许岩.粗糙度对幂律流体湍流沿程阻力系数的影响[J].煤气与热力,2018,38(8):7-12. [3]张明侃. 非牛顿流体在旋转曲线管道内的对流换热研究[D].杭州:浙江大学,2008. [4]王斯民,叶树沛,肖娟,等.旋梯式螺旋折流板换热器预热水煤浆的流动与换热性能[J].高校化学工程学报,2019,33(2):298-307. [5]黄云云,黄永曙,王为旺.不同截面形状螺旋管流动与传热的数值研究[J].计算机与应用化学,2016,33(12):1261-1266. [6]Pourhedayat S, Dizaji H S, Jafarmadar S, et al. An empirical correlation for exergy destruction of fluid flow through helical tubes[J]. Applied Thermal Engineering, 2018, 140(3):679-685. [7]田兴旺. 幂律流体在多孔介质内流动及换热特性研究[D].大连:大连理工大学,2018. [8]李孝军,刘永刚,林凯,等.非牛顿流体石油管流动研究进展及建议[J].石油管材与仪器,2016,2(3):8-14. [9]刘佳驹, 刘伟. 采用螺旋波纹管的折流杆换热器传热与流动数值模拟[J].工程热物理学报, 2015,36(1):151-153. [10]Zhang H, Xu T, Zhang X, et al. Study on local resistance of non-Newtonian power law fluid in elbow pipes[J]. Journal of Thermal Science, 2016, 25(3):287-291. [11] Polizelli M A, Menegalli F C, Telis V R N, et al. Friction losses in valves and fitting for power-law fluids[J]. Brazilian Journal of Chemical Engineering, 2003, 20(4):455-463. [12]Naghibzadeh S K, Hajmohammadi M R, Saffar-Avval M. Heat transfer enhancement of a nanofluid in a helical coil with flattened cross-section[J]. Chemical Engineering Research and Design, 2019, 146(6): 36-47. [13]陈贵冬,王秋旺.矩形截面螺旋通道内流体绕管流动特性的数值研究[J].动力工程学报,2019,39(6):454-460. [14]林清宇,刘鹏辉,冯振飞,等.螺旋通道内流体流动与传热特性研究进展[J].科学通报,2017,62(25):2931-2940. [15]靳遵龙,孙宇婷,李德雨,等.螺旋外肋管换热器壳侧流体流动与换热特性数值研究[J].机械设计与制造,2019(6):219-222. [16]刘希祥. 螺旋管强化传热的CFD模拟优化与场协同分析[D]. 上海:华东理工大学, 2018. [17]郑连存,韩世豪.基于流变协同机制的粘弹性非牛顿流体耦合流动与传热问题研究[J].科学观察,2018,13(6):32-39. [18]Sochi T. Flow of non-Newtonian fluids in converging-diverging rigid tubes[J]. Asia-Pacific Journal of Chemical Engineering, 2015, 10(3):387-399. [19]Ito H. Friction factors for turbulent flow in curved pipes[J]. Journal of Basic Engineering, 1959,81(2): 123-132. [20]Srinivasan P S, Nandapurkar S S, Holland F A. Friction factor for coils[J]. Transactions of the Institution of Chemical Engineers, 1970, 48(6): 156-161.

相似文献/References:

[1]刘俊红,张文克,方肇洪.桩埋螺旋管式地热换热器的传热模型[J].山东建筑大学学报,2010,(02):95.
 LIU Jun-hong,ZHANG Wen-ke,FANG Zhao-hong.Solid cylindrical heat source model for pile ground heat exchangers with spiral coils[J].Journal of Shandong jianzhu university,2010,(01):95.

备注/Memo

备注/Memo:
收稿日期:2019-12-19 基金项目:山东省研究生优质课程建设项目(SDYKC19117);山东省自然科学基金项目(ZR2014JL039)作者简介:张浩(1976-),男,教授,博士,主要从事非牛顿幂律流体边界层、建筑外环境、室内热湿环境等方面的研究. E-mail:qdzhanghao@126.com[*通讯作者]
更新日期/Last Update: 2019-09-19