[1]张丽炜,李嘉宁,*,等.激光及电弧增材制造技术研究进展[J].山东建筑大学学报,2020,(02):68-75.[doi:10.12077/sdjz.2020.02.010]
 ZHANG Liwei,LI Jianing,*,et al.Progress of laser and arc addition manufacturing technology[J].Journal of Shandong jianzhu university,2020,(02):68-75.[doi:10.12077/sdjz.2020.02.010]
点击复制

激光及电弧增材制造技术研究进展()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
期数:
2020年02期
页码:
68-75
栏目:
综合述评
出版日期:
2020-04-15

文章信息/Info

Title:
Progress of laser and arc addition manufacturing technology
文章编号:
1673-7644(2020)02-0068-08
作者:
张丽炜1李嘉宁1*刘立强1王晓临12
(1.山东建筑大学 材料科学与工程学院,山东 济南 250101;2.伍伦贡大学 超导电子材料研究所,澳大利亚 新南威尔士州北伍伦贡 2522)
Author(s):
ZHANG Liwei1 LI Jianing1* LIU Liqiang1 WANG Xiaolin12
( 1. School of Materials Science and Engineering,Shandong Jianzhu University,Jinan 250101,China; 2. Institute of Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New Sourth Wales 2522, Australia )
关键词:
激光增材制造电弧增材制造激光熔化沉积激光选区熔化
Keywords:
laser additive manufacturingarc additive manufacturinglaser fusion depositionlaser selective melting
分类号:
TG456
DOI:
10.12077/sdjz.2020.02.010
文献标志码:
A
摘要:
增材制造在能源化工、生物医学、航天航空等领域表现出了广阔的应用前景,对其研究现状进行综述,有助于梳理先进材料增材制造行业的发展脉络,为先进材料增材制造行业未来的发展提供理论支持。文章介绍了多种电弧增材制造技术控制系统,分析了电弧增材制造技术生产的零件组织性能与传统制造工艺生产的产品之间的差异,对比了激光熔化沉积技术和激光选区熔化技术的优劣,并对先进材料增材制造行业未来的发展进行了展望。
Abstract:
Additive manufacturing has shown broad application prospects in the fields of energy and chemical engineering, biomedicine, aerospace and aviation, etc. A review of its research status will help to sort out the development of advanced material additive manufacturing industry, and provide theoretical support for the future development of advanced material additive manufacturing industry. This paper introduces many kinds of control system of arc added material manufacturing technology, analyzes the arc increases material manufacturing technology to produce parts of organizational performance and the difference between the products of the traditional manufacturing technology, compared the constituency and laser melting technology, laser melting deposition technology and advanced materials to add material manufacturing industry of the future development was prospected.The future development of advanced material additive manufacturing industry is prospected.

参考文献/References:

[1]杨强,鲁中良,黄福享,等.激光增材制造技术的研究现状及发展趋势[J].航空制造技术,2016,59(12):26-31. [2]杨笑宇,李言,赵鹏康,等.电弧增材制造技术在材料制备中的研究现状及挑战[J].焊接,2018(8):14-20. [3]刘继常.金属增材制造研究现状与问题分析[J].电加工与模具,2018,339(2):1-7. [4]耿海滨,熊江涛,黄丹,等.丝材电弧增材制造技术研究现状与趋势[J].焊接,2015(11):17-21,69. [5]周宸宇,罗岚,刘勇,等.金属增材制造技术的研究现状[J].热加工工艺,2018,47(6):9-14. [6]郭瑞星.激光增材制造镍基高温合金温度场的数值模拟研究[D].呼和浩特:内蒙古工业大学,2018. [7]Hupfeld T, Laumer T, Stichel T, et al. A new approach to coat PA12 powders with laser-generated nanoparticles for selective laser sintering[J]. Procedia CIRP, 2018,74:244-248. [8]Olsen J, Shen Z J, Liu L F, et al. Micro- and macro-structural heterogeneities in 316L stainless steel prepared by electron-beam melting[J]. Materials Characterization, 2018,141:1-7. [9]Wan X, Jiang M, Zhou Z W, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B: Engineering, 2017,110:442-458. [10]董鹏,梁晓康,赵衍华,等.激光增材制造技术在航天构件整体化轻量化制造中的应用现状与展望[J].航天制造技术,2018(1):7-11. [11]张在玉.金属材料增材制造技术的应用研究进展[J].世界有色金属,2018,506(14):280-282. [12]江洪,刘敬仪.3D打印在航空航天领域中的应用初探[J].新材[LL]〓〓料产业,2019,303(2):29-32. [13]邢希学,潘丽华,王勇,等.电子束选区熔化增材制造技术研究现状分析[J].焊接,2016(7):22-26,69. [14]董博伦,柏久阳,林三宝,等.激光/电弧增材制造金属的热处理工艺研究现状与发展[J].焊接,2016(4):17-22,73-74. [15]李怀学,巩水利,孙帆,等.金属零件激光增材制造技术的发展及应用[J].航空制造技术,2012,416(20):26-31. [16]王庭庭,张元彬,谢岳良.丝材电弧增材制造技术研究现状及展望[J].电焊机,2017,47(8):60-64. [17]Shen C, Pan Z X, Ding D H, et al. The influence of post-production heat treatment on the multi-directional properties of nickel-aluminum bronze alloy fabricated using wire-arc additive manufacturing process[J]. Additive Manufacturing, 2018,23:411-421. [18]Kussmaul K, Schoch F W, Luckow H. High quality large component‘Shape Welded’by a SAW process[J].Welding Journal,1983,9:17-24.[19]熊俊,薛永刚,陈辉,等.电弧增材制造成形控制技术的研究现状与展望[J].电焊机,2015,45(9):45-50. [20]Kwak Y M, Doumanidis C. Geometry regulation of material deposition in near net shape manufacturing by thermally scanned welding[J]. Journal of Manufacturing Processes, 2002, 4(1):28-41. [21]Wang J, Lin X, Wang J T, et al. Grain morphology evolution and texture characterization of wire and arc additive manufactured Ti-6Al-4V[J]. Journal of Alloys and Compounds, 2018,768:97-113. [22]林洁琼,孙超,靖贤,等.增材制造技术中的自适应分层研究[J].机械设计与制造,2017(6):70-73. [23]Wang J, Pan Z X, Wei L L, et al. Introduction of ternary alloying element in wire arc additive manufacturing of titanium aluminide intermetallic[J]. Additive Manufacturing, 2019,27: 236-245. [24]Biegler M, Graf B, Rethmeier M. In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations[J]. Additive Manufacturing, 2018,20:101-110. [25]袁丁,高华兵,孙小婧,等.改善金属增材制造材料组织与力学性能的方法与技术[J].航空制造技术, 2018, 61(10):39-47. [26]Szost B A, Terzi S, Martina F, et al. A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components[J]. Materials & Design, 2016,89:559-567. [27]李嘉宁,巩水利,王娟,等.Cu对TA15-2钛合金表面Stellite12基激光合金化涂层组织结构及耐磨性的影响[J].金属学报,2014,50(5):547-554. [28]Wang J, Pan Z X, Yang G S, et al. Location dependence of microstructure, phase transformation temperature and mechanical properties on Ni-rich NiTi alloy fabricated by wire arc additive manufacturing[J]. Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing, 2019,749:218-222.[LM] [29]彭谦,董世运,闫世兴,等.激光熔化沉积成形缺陷及其控制方法综述[J].材料导报,2018,32(15):157-173. [30]Li J N, Su M L, Wang X L, et al. Laser deposition-additive manufacturing of ceramics/nanocrystallineintermetallics reinforced microlaminates[J]. Optics and Laser Technology, 2019,117:158-164. [31]Li J N, Craeghs W, Jing C N, et al. Microstructure and physical performance of laser-induction nanocrystals modified high-entropy alloy composites on Titanium alloy[J]. Materials & Design, 2017, 117:363-370. [32]Arregui L, Garmendia I, Pujana J,et al. Study of the geometrical limitations associated to the metallic part manufacturing by the LMD process[J]. Procedia CIRP, 2018,68:363-368. [33]Li J N, Ye Z Y, Fu J, et al. Microstructure evolution, texture and laser surface HEACs of Al-Mg-Si alloy for light automobile parts[J]. Materials Characterization, 2020,160:110093. [34]杨永强,陈杰,宋长辉,等.金属零件激光选区熔化技术的现状及进展[J].激光与光电子学进展,2018,55(1):9-21. [35]巩水利,锁红波,李怀学.金属增材制造技术在航空领域的发展与应用[J].航空制造技术,2013(13):66-71. [36]田杰,黄正华,戚文军,等.金属选区激光熔化的研究现状[J].材料导报:纳米与新材料专辑,2017,31(S1):90-94,101. [37]Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel[J]. Journal of Materials Processing Technology, 2017,249:255-263. [38]Hyun S, Karlsson A M, Torquato S, et al. Simulated properties of Kagomé and tetragonal truss core panels[J]. International Journal of Solids and Structures, 2003, 40(25) :6989-6998. [39]Wang J, Evans A G, Dharmasena K, et al. On the performance of truss panels with Kagomé cores[J]. International Journal of Solids and Structures, 2003, 40(25): 6981-6988. [40]Ouyang D, Xing W, Li N, et al. Structural evolutions in 3D-printed Fe-based metallic glass fabricated by selective laser melting[J]. Additive Manufacturing, 2018,23:246-252. [41]Li J N, Wang X L, Qi W J, et al. Laser nanocomposites-reinforcing/manufacturing of SLM 18Ni300 alloy under aging treatment[J]. Materials Characterization, 2019,153:69-78.

备注/Memo

备注/Memo:
收稿日期:2020-02-27 基金项目:山东省自然科学省属高校优秀青年联合基金项目(ZR2019YQ25)作者简介:张丽炜(1994-),女,在读硕士,主要从事焊接技术与工艺等方面的研究.E-mail:zlw2779@163.com 通讯作者*:李嘉宁(1982-),男,副教授,博士,主要从事激光快速成形等方面的研究.E-mail:jn2368@163.com
更新日期/Last Update: 2020-05-20