[1]王立志,*,常志慧,等.低阻尼改性沥青流变性能与微观结构研究[J].山东建筑大学学报,2019,34(03):1-8.[doi:10.12077/sdjz.2019.03.001]
 WANG Lizhi,*,CHANG Zhihui,et al.Rheological properties and microstructure of low damping modified asphalt[J].Journal of Shandong jianzhu university,2019,34(03):1-8.[doi:10.12077/sdjz.2019.03.001]
点击复制

低阻尼改性沥青流变性能与微观结构研究()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
34
期数:
2019年03期
页码:
1-8
栏目:
研究论文
出版日期:
2019-06-15

文章信息/Info

Title:
Rheological properties and microstructure of low damping modified asphalt
文章编号:
1673-7644(2019)03-0001-08
作者:
王立志1*常志慧1郑广顺2王鹏1张涛1
(1.山东建筑大学 交通工程学院,山东 济南 250101;2.齐鲁交通发展集团,山东 济南 250101)
Author(s):
WANG Lizhi1* CHANG Zhihui1 ZHENG Guangshun2 et al.
(1.School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China;2.Qilu Transportation Development Group, Jinan 250101, China)
关键词:
改性沥青 低阻尼 流变特性 微观结构
Keywords:
modified asphalt low damping rheological properties microstructure
分类号:
U238
DOI:
10.12077/sdjz.2019.03.001
文献标志码:
A
摘要:
降低沥青材料内生热是缓解沥青路面车辙病害的重要途径,而减小沥青材料的阻尼是降低内生热的关键。研究低阻尼改性沥青流变性能与微观结构,可以为沥青材料的功能性设计提供理论依据。文章基于低阻尼轮胎的成果,通过与SBS复合制备低阻尼改性沥青,借助多应力重复蠕变试验、弯曲梁流变仪试验和原子力显微镜、荧光显微镜分析低阻尼复合改性沥青的高低温性能及微观结构,并以损耗因子、复数模量作为评价指标优选聚合物。结果表明:聚合物J-4可显著降低SBS改性沥青损耗因子,提高复数模量;基于累积应变、回复率和不可恢复柔量,J-4可以显著提高SBS改性沥青的高温抗车辙性能,其掺量越大,改善效果越明显,且对SBS改性沥青低温分级不造成影响;J-4可增大SBS相的溶胀面积,增加了改性沥青的弹性分量,降低内生热,且其掺量越大,SBS三维网络结构就越致密。
Abstract:
Reducing the endogenetic heat of asphalt is an important way to alleviate the rutting of asphalt pavement, and reducing the damping of asphalt is the key to reducing endogenous heat. Studying the rheological properties and microstructure of lowdamping modified asphalt can provide data support for the functional design of asphalt materials. Based on the results of lowdamper tires, the lowdamping modified asphalt was prepared by compounding with SBS. The high and low temperature properties and microstructure of the bitumen are studied by means of multistress repeated creep test MSCR, bending beam rheometer test BBR, atomic force microscope AFM and fluorescence microscope FM and the loss factor and the complex modulus are used as evaluation indexes. The results show that polymer J-4 can significantly reduce the loss factor of SBS modified asphalt and increase the complex modulus. Based on the cumulative strain, recovery rate and irreversible compliance, J-4 can significantly improve the high temperature rutting resistance of SBS modified asphalt. The larger the J-4 content, the more obvious the improvement effect, and J-4 has no effect on the low temperature classification of SBS modified asphalt. J-4 can increase the swelling surface of SBS phase and the elastic component of the modified asphalt and reduces the endogenous heat. The larger the J-4 content, the denser the SBS threedimensional network structure.

参考文献/References:

[1]李满良,郑晨,王朝辉,等.绿色生态型城市道路评价指标体系[J].交通运输工程学报,2015,15(2):10-21.[2]朱浩然,孙璐,朱耀庭.基于热力学的沥青混合料粘弹-粘塑性损伤本构模型[J].中国公路学报,2013,26(3):57-64.[3]张久鹏,黄晓明,王晓磊.基于粘弹性理论的沥青路面车辙分析[J].公路交通科技,2007,24(10):20-24.[4]崔文社,陶晶,张争奇,等.高速公路沥青路面车辙成因试验[J].长安大学学报,2009,29(4):8-12.[5]Fernandes M R S, Forte M M C, Leite L F M. Rheological evaluation of polymermodified asphalt binders[J].Materials Research, 2009, 11(3): 381-386.[6]Cho D W, Lee T S, Lee S Y, et al.Comparison of linear viscoelastic complex modulus and yield shear stress in DSR moisture damage test[J].Journal of Testing and Evaluation, 2009, 37(6): 573-581.[7]黄瑞丽,卢珣,龙娟,等.EPDM/ENR宽温域阻尼材料的制备及阻尼机理[J].高分子材料科学与工程,2016,32(10):119-124.[8]黄光速,吴锦荣,郑静.橡胶阻尼材料的研究进展[J].高分子通报,2014(5):49-56.[9]Abolfazl Z S, Ali S, Salman E N. Preparation and rheological characterization of asphalt binders reinforced with layered silicate nanoparticles[J].Construction and Building Materials, 2010, 24(7): 1239-1244.[10]梁超锋,刘铁军,邹笃建,等.材料黏滞系数与损耗因子的频率相关性研究[J].力学学报,2012,44(5):933-936.[11]潘利剑,张博明,戴福洪.黏弹阻尼层共固化复合材料不同温度下的阻尼性能[J].复合材料学报,2008,25(1):168-172.[12]许俊红,李爱群,苏毅,等.开环式聚降冰片烯共混黏弹性阻尼材料的动态阻尼力学热分析[J].高分子材料科学与工程,2015,31(7):51-57.[13]Thiel K H, Ruehmer T. Novel functionalized synthetic rubbers for tire applications[J]. Kautschuk Gummi Kunststoffe, 2013, 66(2): 38-44. [14]Reverberi F. What 2013 and beyond holds for SSBR[J]. Rubber World, 2013, 247(4): 6-8. [15]Kloppenburg H, Gross T, Hard Dave,et al.Standard and modified NdBR for highperformance tires[J]. Rubber World, 2013(6):24-27.[16]李花婷,赵天琪,陈名行.绿色轮胎与橡胶新材料[J].科学通报,2016,61(31):3297-3303.[17]Munera, J C, Ossa E A. Polymer modified bitumen: optimization and selection[J]. Material and Design, 2014, 62: 91-97.[18]Dubois E, Mehta D Y, Nolan A. Correlation between multiple stress creep recovery (MSCR) results and polymer modification of binder[J]. Construction and Building Materials, 2014, 65: 184-190.[19]Ye F, Yin W, Lu H. A Model for the quantitative relationship between temperature and microstructure of styrenebutadienestyrene modified asphalt[J]. Construction Building Materials, 2015, 79: 397-401.[20]Polacco G, Filippi S, Merusi F, et al. A review of the fundamentals of polymermodified asphalts: asphalt/polymer interactions and principles of compatibility[J]. Advances in Colloid and Interface Science, 2015, 224: 72-112.[21]Yusoff N I M, Shaw M T, Airey G D. Modelling the linear viscoelastic rheological properties of bituminous binders[J]. Construction and Building Materials, 2012, 25(5):2171-2189.[22]Zhu J, Birgisson B, Kringos N. Polymer modification of bitumen: advances and challenges[J]. European Polymer Journal, 2014, 54: 18-38.[23]Yu X K, Burnham N A, Mallick R B, et al. A systematic AFMbased method to measure adhesion differences between micronsized domains in asphalt binders[J]. Fuel, 2013, 113: 443-447.[24]Fischer H R, Dillingh E C. On the investigation of the bulk microstructure of bitumenintroducing two new techniques[J]. Fuel, 2014, 118: 365-368.[25]Lyne  L, Wallqvist V, Birgisson B. Adhesive surface characteristics of bitumen binders investigated by atomic force microscopy[J]. Fuel, 2013, 113: 248-256.[26]Wang T, Yi T, Yuzhen Z. The compatibility of SBSModified asphalt[J]. Petroleum Science and Technology, 2010, 28: 764-772.

备注/Memo

备注/Memo:
收稿日期:2019-05-15基金项目:国家自然科学基金青年科学基金项目(51808322); 山东省自然科学基金博士基金项目(ZR2018BEE042)作者简介:王立志(1965-),男,教授,博士,主要从事沥青及沥青混合料等方面的研究. Email:18769787730@126.com[*通讯作者]
更新日期/Last Update: 2019-06-24