[1]亓伟,孙英君,*,等.基于ArcGIS的建筑物屋顶太阳辐射分析——以山东建筑大学为例[J].山东建筑大学学报,2019,34(02):52-56.[doi:10.12077/sdjz.2019.02.009]
 QI Wei,SUN Yingjun,*,et al.Analysis of the solar radiation of building roof based on ArcGIS:A case study of Shandong Jianzhu University[J].Journal of Shandong jianzhu university,2019,34(02):52-56.[doi:10.12077/sdjz.2019.02.009]
点击复制

基于ArcGIS的建筑物屋顶太阳辐射分析——以山东建筑大学为例()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
34
期数:
2019年02期
页码:
52-56
栏目:
研究论文
出版日期:
2019-04-15

文章信息/Info

Title:
Analysis of the solar radiation of building roof based on ArcGIS:A case study of Shandong Jianzhu University
文章编号:
1673-7644(2019)02-0052-05
作者:
亓伟1孙英君12*王鸿燕3江云婷1程英伟1
(1.山东建筑大学 测绘地理信息学院,山东 济南 250101;2.山东省绿色建筑协同创新中心,山东 济南 250101;3.山东农业工程学院 国土资源与测绘工程学院,山东 济南 250100)
Author(s):
QI Wei1 SUN Yingjun12* WANG Hongyan3 et al.
(1. School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China; 2.Shandong Green Building Collaborative Innovation Center, Jinan 250101, China; 3. School of Land Resources and Surveying Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China)
关键词:
激光雷达数据ArcGIS建筑物屋顶太阳辐射
分类号:
P422.1
DOI:
10.12077/sdjz.2019.02.009
文献标志码:
A
摘要:
太阳能作为一种易获取的清洁能源,已经得到了广泛有效地开发利用,最大限度地利用建筑物表面太阳能是智慧城市智慧能源发展中的一项有效措施,而建筑物屋顶太阳辐射估算是合理规划光伏转化设备及环保建筑材料的前提。文章利用机载激光雷达数据,提取了山东建筑大学新校区建筑物的三维信息,以ArcGIS为平台,利用衍生的地形坡度、坡向信息,结合研究区纬度、太阳时角、天气状况等自然因素,对校内13栋建筑屋顶的太阳辐射进行分析。结果表明:晴天时,屋顶接收的太阳辐射是阴天条件下的1.15倍,全天候下雨天中,屋顶太阳辐射量约为晴天状况下的58%;一天之中12∶00~13∶00时段,屋顶太阳辐射最大值可达726.20 Wh/m2;屋顶太阳辐射具有明显的季节变化,夏秋两季太阳辐射较高,分别为491.33、 321.25 kWh/m2。
Abstract:
As one of the easily accessible clean energy, solar energy has been widely developed and utilized. How to maximize the use of solar photovoltaic or photovoltaic energy based on limited building surface space is of great significance to the development of smart city smart energy. Estimating the solar radiation on building roof is the prerequisite of reasonable planning the photovoltaic conversion equipment and the environmental protection building materials. By using the airborne LiDAR data of Shandong Jianzhu University, the three-dimensional information of regional buildings is obtained in this paper. On the basis of ArcGIS, by using the derived terrain slope and aspect information, combined with the natural factors such as the latitude and solar time angle of the study area, and considering the differences of direct solar radiation, scattering and reflection under different weather conditions, the roof solar radiation was estimated on 13 buildings in the campus. The results show that the solar radiation in sunny days is 1.15 times that of cloudy conditions, and in the rainy days, and the solar radiation is 58% of that in sunny days. The roof solar radiation reaches the highest in 12∶00~13∶00 with the value of 726.20 Wh/m2. The seasonal variation of the roof solar radiation is distinct. It reaches the highest in the summer and autumn, with the values of 491.33 and 32.25 kWh/m2, respectively.

参考文献/References:

[1]康艳蓓. 太阳能能源的综合利用[C].天津:2018供热工程建设与高效运行研讨会,2018:434-436.[2]Noorian A M , Moradi I , Kamali G A . Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces[J]. Renewable Energy, 2008, 33(6):1406-1412.[3]Huld,T, Suri M, Dunlop E. A GIS-based system for performance assessment of solar energy system over large geographical region[C]. [JP]Proceedings of International Solar Energy Conference,2006.[4]Izquierdo S, Montanes C, Dopazo C,et al. Roof-top solar energy potential under performance-based building energy codes: the case of Spain[J].Solar Energy,2011, 85(1): 208-213.[5]Wiginton L K, Nguyen H T, Pearce J M. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy[J]. Computers, Environment and Urban Systems, 2010, 34(4): 345-357.[6]Vardimon R. Assessment of the potential for distributed photovoltaic electricity production in Israel[J].Renewable Energy, 2011,36(2): 591-594.[7]刘光旭,吴文祥,张绪教,等.屋顶可用太阳能资源评估研究—以2000年江苏省数据为例[J]. 长江流域资源与环境, 2010, 19(11): 1242-1248.[8]郭晓琳. 基于屋顶面积的徐州市屋顶太阳能光伏潜力评估[D]. 徐州:中国矿业大学, 2015.[9]徐福圆. 基于遥感图像的屋顶面积识别及屋顶光伏容量估计[D]. 杭州:杭州电子科技大学, 2016.[10]吕扬,张显峰,刘羽. 建筑物尺度的太阳能资源潜力估算模型研究[J]. 北京大学学报 (自然科学版), 2013, 49(4): 650-656.[11]Huang Y, Chen Z C, Wu B, et al. Estimating roof solar energy potential in the downtown area using a GPU-Accelerated solar radiation model and airborne LiDAR data[J]. Remote Sensing. 2015, 7(12): 17212-17233.[12]周文臻,陈楠. 天文辐射空间分布与尺度效应研究[J]. 地球信息科学学报, 2018, 20(2): 186-195. [13]崔日鲜.山东省太阳总辐射的时空变化特征分析[J]. 自然资源学报, 2014,29(10):1780-1791.[14]尹青,张华,何金海.近48年华东地区地面太阳总辐射变化特征和影响因子分析[J]. 大气与环境光学学报,2011,6(1): 37-46.[15]马金玉,罗勇,申彦波,等.近50年中国太阳总辐射长期变化趋势[J].中国科学: 地球科学,2012,42(10):1597-1608.[16]Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration: Guidelines for computing crop water requirements[R]. Rome:Food and Agriculture Organization of the United Nations, 1998.[17]康雯瑛, 焦建丽, 王君. 太阳总辐射计算方法对比分析[J]. 气象与环境科学, 2008, 31(3): 33-37.[18]和清华, 谢云. 我国太阳总辐射气候学计算方法研究[J]. 自然资源学报, 2010, 25(2): 308-319.

备注/Memo

备注/Memo:
收稿日期:2019-02-05基金项目:山东省绿色建筑协同创新中心团队建设基金项目(LSXT201506)作者简介:亓伟(1994-),男,在读硕士,主要从事工程GIS技术及其应用等方面的研究.E-mail: qw112079@163.com通讯作者*:孙英君(1976-),女,副教授,博士,主要从事太阳辐射、土壤重金属分布等方面的研究.E-mail: sdjzusyj@126.com
更新日期/Last Update: 2019-05-05