[1]吴旭祥,郭秋英,*,等.基于IGU星历的单基站CORS大气可降水量估计[J].山东建筑大学学报,2019,34(01):54-61.[doi:10.12077/sdjz.2019.01.009]
 WU Xuxiang,GUO Qiuying*,SANG Wengang,et al.Estimation of atmospheric precipitable water vapor of single CORS station based on IGS Ultra-rapid ephemeris products[J].Journal of Shandong jianzhu university,2019,34(01):54-61.[doi:10.12077/sdjz.2019.01.009]
点击复制

基于IGU星历的单基站CORS大气可降水量估计()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
34
期数:
2019年01期
页码:
54-61
栏目:
研究论文
出版日期:
2019-01-25

文章信息/Info

Title:
Estimation of atmospheric precipitable water vapor of single CORS station based on IGS Ultra-rapid ephemeris products
文章编号:
1673-7644(2019)01-0054-08
作者:
吴旭祥1郭秋英1*桑文刚1姜英明2
(1.山东建筑大学 测绘地理信息学院,山东 济南 250101;2.千寻位置网络有限公司,上海 200438)
Author(s):
WU Xuxiang GUO Qiuying* SANG Wengang et al.
(School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China)
关键词:
单基站CORS超快速星历大气可降水量ECMWF再分析资料
Keywords:
single CORS station IGS Ultra-rapid products precipitable water vapor ECMWF reanalysis datasets
分类号:
P228.4
DOI:
10.12077/sdjz.2019.01.009
文献标志码:
A
摘要:
利用地基GPS资料反演大气可降水量,能为改善中小尺度数值天气预报提供较为理想的观测数据,在气象领域具有较高的实用性。文章以单基站CORS为实验对象,基于全球导航卫星系统服务中心向用户提供的超快速星历(IGU),应用GAMIT/GLOBK软件解算GPS观测数据,在验证解算精度达到要求后估计大气可降水量(PWV),分别将其与欧洲中期数值预报中心(ECMWF)的ERA-Interim再分析资料和最终精密星历IGF解算的PWV进行比较分析。结果表明:使用超快速星历IGU估计PWV与ECMWF再分析资料的PWV线性拟合相关系数为0.96,均方根值(RMS)为2.89 mm;使用超快速星历IGU估计PWV与事后精密星历IGF估计PWV的线性拟合相关系数为0.99,RMS为0.18 mm,利用单基站CORS使用IGU超快速星历估计PWV可以达到近实时数值气象预报的实际应用要求。
Abstract:
The precipitable water vapor (PWV) can be back calculated by the ground-based GPS data. The results will provide ideal data for meso-micro scale numerical weather prediction, and has relatively high practicability in applied meteorology. The paper takes the single base station continuously operating reference stations as the research object. The software GAMIT/GLOBK is used to analyze and calculate GPS data based on IGU (IGS Ultra-rapid products) which is provided by International GNSS Service (IGS) center. The calculation precision is verified to be conforming to the requirements. Then, the atmospheric precipitable water vapor can be estimated. The calculated result is separately compared with the ERA-Interim reanalysis data of European Centre For Medium Range Weather Forecasts (ECMWF) and the PWV calculated by the IGS Final products(IGF). The result shows that: the linear fitting correlation coefficient of the PWV estimated by using ultra-rapid products and ECMWF reanalysis data is 0.96, and the RMS is 2.89 mm. The linear fitting correlation coefficient of the PWV estimated by using Ultra-rapid products and IGS Final products is 0.99, and the RMS is 0.18 mm. Employing single base station continuously operating reference stations to use Ultra-rapid products to estimate PWV can satisfy the actual application needs of near real-time data for weather forecast.

参考文献/References:

[1]何亚东,姚宜斌,许超钤,等.我国西南地区PWV与降水量的周期特征及关联性分析[J].测绘地理信息,2016,41(6):44-48. [2]张卫星.中国区域融合地基GNSS等多种资料水汽反演、变化分析及应用[D].武汉:武汉大学,2016. [3]Bevis M, Businger S, Herring T A, et al. GPS meteorology:Remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research Atmospheres,1992,97(D14):15787-15801. [4][JP4]Kanda M.GPS meteorology:Ground-based and space-morne applications[C]. Proceedings of GPS Meteorology,2001:3-12.[JP] [5]Suparta W. Monitoring of GPS precipitable water vapor during the severe flood in Kelantan[J].American Journal of Applied Sciences,2012,9(6):825-831. [6]王小亚,朱文耀,严豪健,等.地面GPS探测大气可降水量的初步结果[J].大气科学,1999,23(5):605-612. [7]陈小雷,景华,仝美然,等.地基GPS遥测大气可降水量应用精度和范围[J].气象科技,2009,37(1):85-88. [8]赵静旸,宋淑丽,朱文耀.ERA-Interim应用于中国地区地基GPS/PWV计算的精度评估[J].武汉大学学报(信息科学版),2014,39(8):935-939, 1008. [9]周茂盛,郭金运,姜英明,等.基于区域CORS的可降水汽含量反演及其精度分析[J].全球定位系统,2016,41(4):6-11, 21. [10]王洪,雷恒池,杨超,等.济南地区大气可降水量三种观测反演资料的对比分析[J].海洋气象学报,2017,37(2):83-89. [11]纪凡华,韩雪蕾,杨志勇,等.鲁西北一次农业致灾暴雨天气成因分析[J].中国农学通报,2018,34(1):103-108. [12]徐韶光,熊永良,刘宁,等.利用地基GPS获取实时可降水量[J].武汉大学学报(信息科学版),2011,36(4):407-411. [13]王树东,万军.不同星历的GAMIT高精度基线解算[J].导航定位学报,2018,6(1):103-107. [14]段晓梅,曹云昌,马尚昌.超快速星历的实测信息和预报信息反演大气可降水量的误差分析[J].成都信息工程学院学报,2017,32(6):577-583. [15][JP2]Saastamoinen J. Contributions to the theory of atmospheric refraction[J]. Bullet in Geodesique,1973,107(1):13-34.[JP] [16]Hopfield H. Tropospheric effect on electromagnetically measured range:Prediction from surface weather data[J].Radio Science,1971,6(3):357-367. [17]Bevis M, Businger S, Chiswell S, et al. GPS meteorology:mapping zenith wet delays onto precipitable water[J]. Journal of Applied Meteorology,1994,33(3):379-386. [18]李建国,毛节泰,李成才,等.使用全球定位系统遥感水汽分布原理和中国东部地区加权“平均温度”的回归分析[J].气象学报,1999,57(3):283-292. [19]GB/T 33700—2017,地基导航卫星遥感水汽观测规范[S].北京:中国标准出版社,2017. [20]姜英明,杨颖,郭金运,等.基于SDCORS的区域可降水汽含量分析[J].全球定位系统,2016,41(1):37-42. [21]吕成亮,王晓珅.GAMIT基线解算质量指标分析[J].城市勘测,2015(6):59-62.

备注/Memo

备注/Memo:
收稿日期:2019-01-20 基金项目:山东省自然科学基金面上项目(ZR2017MD029);山东省住房城乡建设科技项目(2017-R1-004) 作者简介:吴旭祥(1992-),男,在读硕士,主要从事GNSS精密定位数据、GNSS气象学等方面的研究. E-mail:wxxzzz@vip.qq.com 通讯作者*:郭秋英(1970-),女,副教授,博士,主要从事卫星导航精密定位、GPS在气象学中的应用等方面的研究. E-mail: qyguo@sdjzu.edu.cn
更新日期/Last Update: 2018-12-06