[1]宋林泉,陈宝明,*,等.基于LBM的多孔骨架热物性对固液相变的影响研究[J].山东建筑大学学报,2017,(04):356-364.
 Song Linquan,Chen Baoming,*,et al.Research on the influence of solid liquid phase change in porous skeleton media based on LBM method[J].,2017,(04):356-364.
点击复制

基于LBM的多孔骨架热物性对固液相变的影响研究()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
期数:
2017年04期
页码:
356-364
栏目:
研究论文
出版日期:
2017-08-15

文章信息/Info

Title:
Research on the influence of solid liquid phase change in porous skeleton media based on LBM method
文章编号:
1673-7644(2017)04-0356-09
作者:
宋林泉1陈宝明123*郜凯凯1
(1.山东建筑大学 热能工程学院,山东 济南 250101;2.可再生能源建筑利用技术教育部重点实验室,山东 济南 250101;3.山东省建筑节能技术重点实验室,山东 济南 250101)
Author(s):
Song Linquan1 Chen Baoming123* Gao Kaikai1
(1. School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China; 2. Key Laboratory of Renewable Energy Utilization Technology in Building of National Education Ministry, Shandong Jianzhu University, Jinan 250101, China; 3. Shandong Key Laboratory of Building EnergySaving Technologies, Shandong Jianzhu University, Jinan 250101, China)
关键词:
固液相变格子玻尔兹曼方法糊状区多孔骨架两区域焓—多孔介质模型
Keywords:
solidliquid phase transition Lattice Boltamann Method mushy region porous skeleton twozone enthalpyporous model
分类号:
TU996
文献标志码:
A
摘要:
对不同物性骨架对固液相变过程的影响研究可为中低温相变储能技术的应用和发展奠定理论基础。文章基于格子玻尔兹曼方法(LBM),采用两区域焓—多孔介质模型研究了方腔内无填充多孔介质骨架固液相变过程,从孔隙尺度分析了相变过程的流动和传热机理,探讨了方腔内填充不同导热系数的骨架对于相变过程的影响。结果表明:在无填充多孔介质骨架方腔内固液相变过程中传热方式由热传导逐渐向自然对流换热转变,形成向右倾斜的糊状区;它的存在导致相变材料不能完全融化,且在方腔的左侧壁面处存在上窄下宽的固相相变材料;在填充多孔介质骨架方腔内,融化的初始阶段,高导热系数多孔骨架的相变材料融化速率较大,对相变换热起到了明显的促进作用,而当相变过程发展至准稳态阶段,受到右壁面处的低温影响和糊状区的综合作用,相变过程受到明显的抑制,且骨架的导热系数越大,其融化率越低。
Abstract:
Changes of heat transfer and flow filled with different thermal conductivity skeleton on the solidliquid phase change process set the theoretical foundation for the application and development of low temperature phase change energy storage technology. This paper has adopted the twozone enthalpyporous model to study the solidliquid phase transition process based on the Lattice Boltamann Method(LBM). On this basis, the solidliquid phase change process in porous media was studied based on the pore scale to mainly analyze the influences of porous thermal conductivity on the phase change process. The results show that the heat conduction gradually shifts to the natural convection heat transfer which results in an above narrow and under thick mushy region. Because of the existence of the mushy zone, the phase change material does not completely melt causing a narrow top and wider bottom of the solid material at the left wall of the square cavity. For the solid liquid phase transition process of porous media, the high thermal conductivity porous skeleton has a higher melting rate. However, when the phase transition develops to the quasi steady state, the porous skeleton with high thermal conductivity has a significant effect on the natural convection heat transfer which indicates that the melting rate is less than that of the porous skeleton with low thermal conductivity.

参考文献/References:

[1] Hed G., Bellander R.. Mathematical modelling of PCM air heat exchanger[J].Energy Buildings,2006,38(2):82-89.[2] Gosselin L., lacroix M.. Heat transfer and banks formation in a slag Bath with embedded heat sources[J].International Journal of Heat Mass Transfer,2003,46(14):2537-2545.[3] Zhang Z.,Fang X.. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J].Energy Conversion and Management,2006,47(3):303-310. [4] Trp A.. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shellandtube latent thermal energy storage unit[J]. Solar Energy,2005,79(6):648-660. [5] Kazmierczak M., Poulikakos D., Pop I.. Melting from a flat plate embedded in a porous medium in the presence of steady natural convection[J]. Numerical Heat Transfer Applications, 1986, 10(10):571-581. [6] Jany P., Bejan A.. Scales of melting in the presence of natural convection in a rectangular cavity filled with porous medium[J]. Journal of Heat Transfer, 1988, 110(2):526-529.[7] Bejan A.. Theory of melting with natural convection in an enclosed porous medium[J]. Journal of Heat Transfer,1989,111(2):407-415. [8] Mancin S., Diani A., Doretti L., et al.. Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams[J]. International Journal of Thermal Sciences,2015,90:79-89.[9] 何叶从,周杰,王厚华,等. 相变墙房间传热特性研究[J]. 太阳能学报,2007,28(10):1085-1090.[10] 崔娜,谢静超,刘加平,等. 石膏基相变储能构件的数值模拟分析[J]. 化工学报,2014,65(s1):328-335. [11] ]Wen S., Jiaung C.K.. Lattice boltzmann method for the heat conduction problem with phase change[J]. Numerical Heat Transfer Fundamentals,2001,39(2):167-187.[12] 夏莉. 复合相变储能材料的研制与潜热储能中热物理现象的研究[D]. 上海:上海交通大学,2011.[13] Gao D., Chen Z.. Lattice boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media[J]. International Journal of Thermal Sciences,2011,50(4):493-501.[14] Voller V.R., Prakash C.A.. Fixed grid numerical modelling methodology for convectiondiffusion mushy region phasechange problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719.[15] Mehrabian R., Keane M., Flemings M.C.. Interdendritic fluid flow and macrosegregation influence of gravity[J]. Metallurgical and Materials Transactions B,1970,1(5):1209-1220.[16] Hu X., Zhang Y.. Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: Laminar flow in a circular tube with constant heat flux[J]. International Journal of Heat and Mass Transfer, 2002, 45(15): 3163-3172.[17] ]Goel M., Roy S.K., Sengupta S.. laminar forced convection heat transfer in microcapsulated phase changematerial suspensions[J]. International Journal of Heat and Mass Transfer,1994,37(4):593-604.[18] Bhattacharya M., Basak T.G.. A fixedgrid finite element based enthalpy formulation for generalized phase change problems: role of superficial mushy region[J]. International Journal of Heat and Mass Transfer, 2002,45(24):4881-4898.[19] 柴振华,郭照立,施宝昌.用多松弛格子Boltzmann方法预测多孔介质的渗透率[J]. 工程热物理学报,2010,31(1): 107-109.[20] Bertrand O., Binet B., Combeau H., et al.. Melting driven by natural convection——A comparison exercise: first results[J]. International Journal of Thermal Sciences,1999,38(1):5-26.[21] Seta T., Takegoshi E., Okui K.. Lattice Boltzmann simulation of natural convection in porous media[J].Mathematics and Computers in Simulation,2006,72(2):195-200.

备注/Memo

备注/Memo:
收稿日期:2017-06-18 作者简介:宋林泉(1990- )男,在读硕士,主要从事多孔介质内流动换热等方面的研究.Email:923344348@qq.com 通讯作者*:陈宝明(1963- )男,教授,博士,主要从事复杂体系中的传热传质等方面的研究.Email:chenbm@sdjzu.edu.cn
更新日期/Last Update: 2017-07-05