[1]董明晓,张恩,韩松君,等.塔式起重机运动惯性力引起货物摆动特性分析[J].山东建筑大学学报,2017,(04):307-310.
 Dong Mingxiao,Zhang En,Han Songjun,et al.Analysis of cargo oscillation caused by inertia force of mechanism motions for tower cranes[J].,2017,(04):307-310.
点击复制

塔式起重机运动惯性力引起货物摆动特性分析()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
期数:
2017年04期
页码:
307-310
栏目:
研究论文
出版日期:
2017-08-15

文章信息/Info

Title:
Analysis of cargo oscillation caused by inertia force of mechanism motions for tower cranes
文章编号:
1673-7644(2017)04-0307-04
作者:
董明晓张恩韩松君王胜春
(山东建筑大学 机电工程学院 山东 济南 250101)
Author(s):
Dong Mingxiao Zhang En Han Songjun et al.
(School of Mechanical and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)
关键词:
塔式起重机货物惯性力摆动幅值
Keywords:
tower crane cargo inertia force oscillation amplitude
分类号:
TH213
文献标志码:
A
摘要:
塔式起重机机构运动容易引起货物摆动,降低了起重机的工作效率和安全性。通过分析机构运动惯性力引起的货物摆动特性,可为有效消除塔式起重机货物摆动提供控制理论和方法。文章根据LagrangeEuler运动方程,建立塔式起重机动力学模型,推导了惯性力引起的货物摆动角度、角速度及货物摆动中心线倾斜角度的计算公式,通过实验仿真分析其摆动特性,并对机构运动惯性力引起的货物摆动最大角度进行估算。结果表明:塔式起重机变幅机构和回转机构运动惯性力使货物产生空间摆动;货物运动惯性力、离心力和科氏力的共同作用使摆动中心线发生倾斜,偏离了原来的平衡位置;货物运动的离心力和科氏力进一步加大了空间摆动的幅值。
Abstract:
Cargo oscillation, induced by mechanism motions of tower cranes, reduces work efficiency and safety of cranes. Therefore, it is necessary to analyze the swing performances induced by motion inertial forces of the mechanisms to explore the control theories and methods for restraining the cargo oscillation. In this paper, the dynamical models of the tower crane based on LagrangeEuler equation of motion are set up and the oscillation characteristics induced by inertia force of the mechanism movements are analyzed. Then the calculation formula of the swing angle and angular velocity caused by the inertia force are deduced. The expression for calculating the inclination angle of the cargo oscillation centerline is proposed and the formula of the maximum oscillation angle induced by the inertial forces are put forward. The validity of the formula is proven by simulation. The simulation results show that the motion inertia forces of the translation mechanism and the rotation mechanism of the tower crane make the cargo oscillate in space swing. The centrifugal force and the Coriolis force further increase the oscillation amplitude. The oscillation center line tilts are induced by the common effect of the inertia force, the centrifugal force and the Coriolis force and deviates from the original balance position.

参考文献/References:

[1] Kim D., Park Y.. Tracking control in xy plane of an offshore container crane[J]. Journal of Vibration and Control, 2015, 7(1): 1-15.[2] Fang Y. C., Zhang Y.C.. Dynamics analysis and nonlinear control of an offshore boom crane[J]. IEEE Transactions on Industrial Electronics, 2014, 16(1): 414-427.[3] Kiviluoto S., Eriksson L., Koivo H. N.. Modelling and control of vertical oscillation in overhead cranes[C]. Chicago: 2015 American Control Conference, 2015 [4] Fujioka D. , Shah M. , Singhose W. . Robustness analysis of inputshaped model reference control on a doublependulum crane[C]. Chicago: 2015 American Control Conference, 2015. [5] Yoon J. , Vaughan J.E.. Control of crane payloads that bounce during hoisting[J]. IEEE Transactions on Control Systems Technology,2014,22(3):1233-1238.[6] Kumada T. , Chen G. ,Takami I. . Adaptive control for jib crane with nonlinear uncertainties[C]. Kathmandu: 12th IEEE International Conference on Control & Automation (ICCA), 2016.[7] Zhang X. B., Sun N.. Minimumtime trajectory planning for underactuated overhead crane systems with state and control constraints[J].IEEE Transactions on Industrial Electronics,2014,61(12):6915-6925.[8] Lu B. , Fang Y. C. , Sun N. . Modeling and verification for a fourrope crane[C]. Shenyang: The 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, 2015.[9] Smoczek J., Szpytko J.. Particle swarm optimizationbased multivariable generalized predictive control for an overhead crane[J].IEEEASME Transactions on Mechatronics,2017,22(1):258-268.[10] Donaire A.M.R., Singh N.M.. Shaping the energy of mechanical systems without solving partial differential equations[J]. IEEE Transactions on Automatic Control, 2016,64(4):1051-1056.[11] Sun N. F.Y., Fu Y.M.. Slew/translation positioning and swing suppression for 4DOF Tower cranes with parametric uncertainties: design and hardware experimentation[J]. IEEE Transactions on Industrial Electronics,2016,63(10):6407-6418.[12] Kurabayashi T. , Yang C., Murakami T. . An advanced position control of overhead crane by sway suppression method emulating natural damping[C]. Hiroshima: The 2014 International Power Electronics Conference,2014.[13] Farag S.A., Foda S.G., Alenany A.. Fuzzy control of a large crane structure[J].European Journal of Engineering Research and Science,2016,1(6):68-73.[14] 董明晓.实现起重机自动化的时滞控制理论及应用研究[D]. 西安: 西安交通大学, 2005.[15] GB/T 3811—2008,起重机设计规范[S].北京:中国标准出版社,2008.[16] 董明晓,郑康平,张明勤,等.回转起重机载荷摆动建模误差及不确定性定量分析[J].应用基础与工程科学学报,2005,13(1):75-80.

相似文献/References:

[1]徐书娟,脱建智,胡长涛,等.塔式起重机虚拟操作培训系统视景建模[J].山东建筑大学学报,2010,(04):379.
 XU Shu-juan,TUO Jian-zhi,HU Chang-tao,et al.Scene modeling of virtual operation training system for tower cranes[J].,2010,(04):379.
[2]朱翠兰,董明晓,邱鲁江,等.塔式起重机视景仿真系统场景建模与驱动[J].山东建筑大学学报,2012,(03):284.
 ZHU Cui-lan,DONG Ming-xiao,QIU Lu-jiang,et al.Scene modeling and driving of visual simulation system for tower cranes[J].,2012,(04):284.
[3]阎玉芹1,2,成红波1,等.塔式起重机钢结构损伤诊断试验研究[J].山东建筑大学学报,2014,(06):491.
 Yan Yuqin,Cheng Hongbo,et al.Experimental investigation on steel structural damage diagnosis of tower crane[J].,2014,(04):491.

备注/Memo

备注/Memo:
收稿日期:2017-05-26
基金项目:国家自然科学基金项目(51475277);山东省高端外国专家项目(370020121030);山东省科技发展计划项目(2013GCG20303)。
作者简介:董明晓(1965-),女,教授,博士,主要从事机电系统运动控制、振动控制等方面的研究.E-mail:mxdong@sdjzu.edu.cn
更新日期/Last Update: 2017-08-09