[1]余欣,张爱社*.基于OpenSees的钢筋混凝土剪力墙数值分析[J].山东建筑大学学报,2017,(02):144-151.[doi:10.12077/sdjz.2017.02.007]
 Yu Xin,Zhang Aishe*.Numerical analysis of reinforced concrete shear wall based on OpenSees[J].Journal of Shandong jianzhu university,2017,(02):144-151.[doi:10.12077/sdjz.2017.02.007]
点击复制

基于OpenSees的钢筋混凝土剪力墙数值分析()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
期数:
2017年02期
页码:
144-151
栏目:
研究论文
出版日期:
2017-04-15

文章信息/Info

Title:
Numerical analysis of reinforced concrete shear wall based on OpenSees
文章编号:
1673-7644(2017)02-0144-08
作者:
余欣张爱社*
(山东建筑大学 土木工程学院,山东 济南 250101)
Author(s):
Yu Xin Zhang Aishe*
(School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China)
关键词:
OpenSees钢筋混凝土剪力墙纤维模型抗震性能
Keywords:
OpenSeesreinforced concrete shear wallfiber model seismic performance
分类号:
TU317.1;TU398.2
DOI:
10.12077/sdjz.2017.02.007
文献标志码:
A
摘要:
有限元数值模拟是研究钢筋混凝土剪力墙抗震性能的一种有效手段,不同数值分析模型的选取对钢筋混凝土剪力墙抗震性能的研究有较大的影响。文章通过OpenSees软件分别采用基于塑性铰单元的纤维模型和基于位移的纤维单元对不同轴压比下钢筋混凝土剪力墙建立了数值分析模型,分析材料的本构模型,阐述不同轴压比的钢筋混凝土剪力墙低周反复荷载试验,并将数值模拟结果与试验结果进行对比分析。结果表明:钢筋混凝土剪力墙由弯曲变形控制、滞回环比较饱满、耗能情况比较好、具有较好的抗震性能,同时随着轴压比的增大,试件的屈服荷载和极限荷载都有显著增加,延性系数有所降低;采用基于塑性铰单元的纤维模型在合理确定塑性区段范围的基础上能够更好的模拟以受弯为主的钢筋混凝土剪力墙的抗震性能;基于塑性铰单元模拟得到的屈服荷载值、极限荷载值以及延性系数与试验结果的误差都控制在10%之内,而基于位移的纤维单元模拟得到的屈服荷载值误差都超过20%、极限荷载值误差在10%之内。
Abstract:
The finite element numerical simulation is an effective method to study the seismic performance of reinforced concrete shear wall, and the selection of different numerical analysis model has a great influence on the seismic performance of reinforced concrete shear wall. The finite element software OpenSees is used to establish the numerical analysis model of reinforced concrete shear wall under different axial compression ratios, the fiber models based on the beam with hinges element and the displacement based on beam column element are simulated respectively. Meanwhile, the constitutive model of material is analyzed, the low cyclic loading test of reinforced concrete shear wall is presented, and the simulation results are compared with the test results. The results indicate that the reinforced concrete shear wall is controlled by flexural deformation, the hysteresis loop is full, the energy consumption is better and has better seismic performance. With the increase of axial compression ratio, the yield load and ultimate load of the specimens increase significantly, and the ductility coefficient decreases a little. The fiber model based on the beam with hinges element can better simulate the seismic performance of the reinforced concrete shear wall when the plastic section is determined reasonably. The error of the yield load, ultimate load and the ductility coefficient based on the beam with hinges element is controlled within 10%. The error of the yield load is over 20% and the error of the ultimate load is controlled within 10%, which are based on the DisplacementBased Beam-Column Element.

参考文献/References:

[1]缪志伟.钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究[M].北京:中国建筑工业出版社,2014.[2]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005. [3]Kabeyasawa T., Shiohara H., Otani S., et al..Analysis of the FullScale seven story reinforced concrete test structure[J].Journal of the Faculty of Engineering,1983,37(2):432-478.[4]Orakcal K., Wallace J.W., Conte J.P..Nonlinear modeling and analysis of slender reinforced concrete walls[J]. American Certification Institute Structural Journal,2004,101(5):688-698.[5]解琳琳,黄羽立,陆新征,等.基于OpenSees的RC框架-核心筒超高层建筑抗震弹塑性分析[J].工程力学,2014,31(1):64-71.[6]陈学伟,韩小雷,孙思为.三种非线性梁柱单元的研究及单元开发[J].工程力学,2011,28(S1):5-11.[7]宁超列,段忠东.OpenSees中三种非线性梁柱单元的研究[J].低温建筑技术,2009,31(3):49-52.[8]李宁波,钱稼茹,纪晓东,等.应用OpenSees计算双钢管高强砼柱的水平力-位移滞回曲线[J].防灾减灾工程学报,2014,34(5):606-612.[9]童小龙,方志,罗肖,等.RPC剪力墙非线性分析及轴压比限值研究[J].四川大学学报(工程科学版),2015,47(4):45-51.[10]童师敏,陈麟,周云.双钢板高强混凝土组合剪力墙滞回性能模拟[J].华南地震,2014,34(z1):102-106.[11]潘志宏,李爱群.混凝土剪力墙结构静力非线性分析的弯剪模型及实现[J].东南大学学报(自然科学版),2012,42(4):701-705.[12]梁兴文,叶艳霞.混凝土结构非线性分析[M].北京:中国建筑工业出版社,2007.[13]江见鲸,李杰,金良伟.高等混凝土结构理论[M].北京:中国建筑工业出版社,2006.[14]Mari A., ScordelisA.. Nonlinear Geometric Material and Time Dependent Analysis of Three Dimensional Reinforced and PrestressedConcrete Frames[R]. Berkeley: Department of Civil Engineering, University of California, 1984.[15]Scott M. H., Fenves G. L.. Plastic hinge integration methods for forcebased beamcolumn elements[J]. Journal of Structural Engineering, 2006, 132(2): 244-252.[16]Priestley M. J .N.,Seible F., CalviG. M. S.. Seismic Design and Retrofit of Bridges[M]. New York: John Wiley & Sons, 1996.[17]Menegotto M.. Method of Analysis for Cyclically Loaded R. C. Plane Frames Including Changes in Geometry and NonElastic Behavior of Elements under Combined Normal Force and Bending[C]. Zurich: International Association for Bridge and Structural Engineering, 1973.[18]Filippou F.C., Popov E.P., BerteroV.V.. Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints[R]. Berkeley:Earthquake Reserch Center, University of California, 1983.[19]Scott B. D., Park R. and Priestley M. J. N.. Stressstrain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. American Certification Institude Structural Journal, 1982, 79(2):13-27.

备注/Memo

备注/Memo:
收稿日期:2017-03-20基金项目:国家自然科学基金项目(51078225) 作者简介:余欣(1993-),男,在读硕士,主要从事结构抗震等方面的研究.Email:yuxin1993@icloud.com通讯作者*:张爱社(1969-),男,教授,博士,主要从事混凝土结构抗震等方面的研究.Email: sdjzutmsys@163.com
更新日期/Last Update: 2017-04-20