[1]刘立强,王晓临,李真一,等.太阳能高效利用减反射技术研究进展[J].山东建筑大学学报,2016,(06):606-613.
 Liu Liqiang,Wang Xiaolin,Li Zhenyi,et al.Research progress of antireflection technology for high solar energy efficiency[J].Journal of Shandong jianzhu university,2016,(06):606-613.
点击复制

太阳能高效利用减反射技术研究进展()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
期数:
2016年06期
页码:
606-613
栏目:
综合述评
出版日期:
2016-12-15

文章信息/Info

Title:
Research progress of antireflection technology for high solar energy efficiency
作者:
刘立强12王晓临3李真一4孙明杰12崔凯旋12
1.山东建筑大学 材料科学与工程学院,山东 济南 250101;2.山东省绿色建筑协同创新中心,山东 济南 250101;3.澳大利亚创新材料协会,新南威尔士 伍伦贡 2522;4.中国科学院海洋研究所,山东 青岛 266071
Author(s):
Liu Liqiang1 Wang Xiaolin2 Li Zhenyi3 et al.
1.Co-Innovation Center for Green Building of Shandong Province, School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, China; 2.Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia; 3.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 66071, China
关键词:
太阳能高效利用减反射技术梯度折射率制备技术
Keywords:
solar energy high efficiency antireflection technology gradient refractive indexpreparation technology
分类号:
TK519
文献标志码:
A
摘要:
减反射技术是提高太阳能利用效率、促进太阳能应用发展的有效途径。但受各种减反射薄膜制备技术的限制,目前还难于达到最佳利用效果,因此减反射技术在太阳能领域的应用还有很大发展空间。文章综述了在太阳能利用领域所采用的各种减反射技术,如PVD、SolGel和腐蚀等方法的性能、工艺特点和应用现状,指出现有的以1/4波长干涉原理为基础的减反射技术难于实现太阳能的高效利用的原因,总结分析了不同类型的减反射技术和性能特点,提出了梯度折射率减反射是实现超低反射率、超宽带减反射的最佳技术路线,通过总结PVD、等离子刻蚀、纳米组装、SolGel及腐蚀法等各种减反射方法的制备技术特点,阐述了各种减反射技术制备梯度折射率膜层的可行性,展望了梯度折射率减反射技术在太阳能高效利用领域的发展前景。
Abstract:
Antireflection technology is one of the effective ways to improve the solar energy efficiency and promote the development of solar energy applications. However, the preparation technology is not perfect which limits its use in solar energy filed. In this paper, most kinds of antireflection preparation technologies, such as PVD, Sol-Gel, etching method, and so on, are reviewed. The processing characteristic, product properties and present application of these technology are also surveyed. It is pointed out that the antireflection technology based on 1/4 wavelength interference principle can not realize the high solar energy efficiency due to the high reflectivity and narrow antireflection bandwidth of the antireflection film with singlelayer or multilayer homogeneous refractive index. Therefore, it is thought that the best method of acquiring the antireflection with ultra-low reflectance and ultrawide bandwidth is the gradient refractive index antireflection technology. The practicability methods of preparing gradient refractive index antireflection films are discussed by comparing various preparation technology including PVD, plasma etching, nano-assembly, Sol-Gel and etching method. The development of gradient refractive index antireflection technology applied in high solar energy efficiency filed are expected.

参考文献/References:

[1]赵玉文.太阳能利用的发展概况和未来趋势[J].中国电力,2003,36(9):63-69.[2]闫云飞,张智恩,张力,等.太阳能利用技术及其应用[J].太阳能学报,2012,33(s1):47-56.[3]季杰,于志,孙炜,等.多种太阳能技术与建筑一体化的应用研究[J].太阳能学报,2016,37(2):489-493.[4]梁俊强.中国太阳能建筑应用行业现状与趋势[J].建筑节能,2013,41(4):34-36.[5]Blieske U., Doege T., Gayout P., et al.. Light-trapping in solar modules using extra-white textured glass[C]. Osaka: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion,2003.[6]杨柯,魏永强.光伏压延玻璃花型角对透过率的影响[J].玻璃与搪瓷,2015,43(2):38-42, 47.[7]Glaubitt W., Lbmann P.. Antireflective coatings prepared by sol-gel processing: Principles and applications[J]. Journal of the European Ceramic Society ,2012,32(11):2995–2999.[8]黄玉萍,阙永生,汪海风,等.溶胶凝胶法制备多孔SiO2 减反射膜结构和性能研究[J].稀有金属材料与工程,2016,45(S1):12-15.[9]赖博渊,杨辉,夏卫文.分步催化制备纳米 SiO2减反射膜的性质与结构研究[J].湖南大学学报:自然科学版,2015,42(6):13-19.[10]Honciuc G.,Singurela G.. Antireflection optical coatings for the spectral range 400-700nm,400-900 nm and 800-1600 nm[J].Journal of Optoelectronics and Advanced Materials,2004,6(4):1199-1205.[11]Macleod H.A.. Thin-Film Optical Filters(3nd)[M]. London: Institute of Physics Publishing, 2001.[12]谢光明.丹麦减反射玻璃简介[J].太阳能,2007(6):33.[13]Southwell W.H.. Gradient-index antireflection coatings[J]. Optics Letters,1983,8(11):584-586.[14]黄光伟,田维坚,卜江萍.超宽带增透膜新的设计法[J].光子学报,2007,36(9):1694-1696.[15]张霄,杭凌侠.PECVD技术制备光学减反射膜工艺探索[J].光学技术,2011,37(1):97-100.[16]Xi J.Q., Schubert M.F., Kim J.K., et al.. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection[J]. Nature Photonics,2007,1(3):176-179.[17][JP3]Welser R.E., Sood A.W., Pethuraja G.G., et al.. Broadband Nanostructured Antireflection Coating on Gglass for PhotovoltaicACpplications[C]. Photovoltaic Specialists Conference,38th IEEE,2012.[JP][18]Huang Y.F., Chattopadhyay S., Jen Y.J., et al.. Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic Silicon nanostructures[J]. Nature Nanotechnology,2007,2(12):770-774.[19][JP2]Rahman A., Ashraf A., Xin H.L., et al.. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in Silicon solar cells[J]. Nature Communications,2015,6(5963):1-6.[JP][20]潘峰,张旺,张荻.仿生纳米硅结构减反射及陷光性能模拟研究[J].光学学报,2016,36(5):163-168.[21]Diedenhofen S.L., Vecchi G., Algra R.E., et al.. Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods[J]. Advanced Materials,2009,21(9):973.[22]Li Y.F., Zhang J.H., Yang B.. Antireflective surfaces based on biomimetic nanopillared arrays[J]. Nano Today,2010,5(2):117-127.[23]Spinelli P., Verschuuren M.A., Polman A.. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators[J]. Nature Communications,2012,3(2):23-25.[24]Li P.C., Yu E.T.. Large-area omnidirectional antireflection coating on low-index materials[J]. Journal of the Optical Society of America B,2013,30(10):2584-2588.[25]Li X.G., Shen J.. A scratch-resistant and hydrophobic broadband antireflective coating by sol-gel method[J]. Thin Solid Films,2011,519(19):6236-6240.[26]Zhang X.P., Lan P.J., Lu Y.H., et al.. Multifunctional antireflection coatings based on novel hollow silica-silica nanocomposites[J]. ACS Applied Materials and Interfaces,2014,6(3):1415-1423.[27]Du Y., He H.B., Jin Y.X., et al.. Graded porous glasses for antireflective applications formed by chemical treatment[J]. Applied Surface Science,2012,258(17):6431-6435.[28]刘立强,王晓临,井敏,等.梯度折射率宽带减反射光伏玻璃研究[J].功能材料,2012,43(3):357-359.[29]Liu L.Q., Wang X.L., Jing M., et al.. Broadband and omnidirectional, nearly zero reflective photovoltaic glass[J]. Advanced Materials,2012,24(47):6318-6322.[30]刘立强.减反射玻璃及二次酸腐蚀制备减反射玻璃的方法:中国:201210331877.X[P].2015.04.22.[31]刘立强.减反射玻璃及二次碱腐蚀制备减反射玻璃的方法:中国:201210331809.3[P].2014.12.24.

相似文献/References:

[1]管振忠,薛一冰,孙铭,等.绿色建筑理念在震后重建小学设计中的应用实践[J].山东建筑大学学报,2009,(02):150.
 GUAN Zhen-zhong,XUE Yi-bing,SUN Ming,et al.Green building principle practiced in the design of rebuilding schools in the quaked area in Sichuan: An analysis of seed Architecture in 2009 International Solar Energy Design Competition[J].Journal of Shandong jianzhu university,2009,(06):150.
[2]魏林滨,王强,王海云,等.阳台壁挂太阳能—空气源复合热泵系统的仿真模拟和实验验证[J].山东建筑大学学报,2009,(03):251.
 WEI Lin-bin,WANG Qiang,WANG Hai-yun,et al.Simulation and experimental verification of solar-air compound source heat pump system hanging on balcony[J].Journal of Shandong jianzhu university,2009,(06):251.
[3]何文晶,李沛,刘雅梅.济南市可再生能源建筑应用规划研究[J].山东建筑大学学报,2011,(03):251.
 HE Wen-jing,LI Pei,LIU Ya-mei.The application planning of renewable energy buildings in Jinan[J].Journal of Shandong jianzhu university,2011,(06):251.
[4]于涛,刘鹏,张士松,等.基于地温平衡的太阳能—地源热泵系统设计[J].山东建筑大学学报,2012,(02):234.
 YU Tao,LIU Peng,ZHANG Shi-song,et al.Solar-ground source heat pump system design based on equilibrium geothermal temperature [J].Journal of Shandong jianzhu university,2012,(06):234.
[5]王强,杨静,陈明九,等.太阳能空气源热泵复合系统实验研究[J].山东建筑大学学报,2012,(02):212.
 WANG Qiang,YANG Jing,CHEN Ming-jiu,et al.Experimental study on compound system of solar and air source heat pump[J].Journal of Shandong jianzhu university,2012,(06):212.
[6]尹纲领 1,周加强 2.酒店建筑地源热泵空调系统运行方式探析 [J].山东建筑大学学报,2013,(05):474.
 Yin Gangling,Zhou Jiaqiang.Analysis of the operation way of the hotel building ground source heat pump air conditioning system[J].Journal of Shandong jianzhu university,2013,(06):474.
[7]崔艳秋,*,郎冰,等.生态颐养服务中心概念设计策略研究 ——以泉州市为例[J].山东建筑大学学报,2019,34(06):79.[doi:10.12077/sdjz.2019.06.013]
 CUI Yanqiu,*,LANG Bing,et al.Concept design strategy of ecological elder service center: A case study of Quanzhou City[J].Journal of Shandong jianzhu university,2019,34(06):79.[doi:10.12077/sdjz.2019.06.013]
[8]尹红梅,*,张灵芝,等.基于太阳能利用潜力的济南市高校公寓设计[J].山东建筑大学学报,2020,35(02):46.[doi:10.12077/sdjz.2020.02.007]
 YIN Hongmei,*,ZHANG Lingzhi,et al.Design of universities apartments in Jinan based on solar energy utilization potential[J].Journal of Shandong jianzhu university,2020,35(06):46.[doi:10.12077/sdjz.2020.02.007]

备注/Memo

备注/Memo:
收稿日期:2016-10-27基金项目:山东省科技发展计划项目(2011GGX10213);江苏省重点研发计划项目(BE2015325) 作者简介:刘立强(1960-),男,教授,博士,主要从事光电功能材料、玻璃陶瓷材料、太阳能利用技术和计算材料等方面的研究. E-mail:lqliu@sdjzu.edu.cn
更新日期/Last Update: 2017-01-14