[1]李龙,魏培君.偶应力热弹性介质控制方程的推导[J].山东建筑大学学报,2016,(04):378-384.
 Li Long,Wei Peijun.Derivation of governing equations of couple-stress thermoelastic medium[J].Journal of Shandong jianzhu university,2016,(04):378-384.
点击复制

偶应力热弹性介质控制方程的推导()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
期数:
2016年04期
页码:
378-384
栏目:
研究论文
出版日期:
2016-08-15

文章信息/Info

Title:
Derivation of governing equations of couple-stress thermoelastic medium
作者:
李龙魏培君
(北京科技大学 数理学院应用力学系,北京 100083)
Author(s):
Li LongWei Peijun
( Department of Applied Mechanics, University of Science and Technology Beijing, Beijing 100083, China)
关键词:
关键词:偶应力弹性理论Lord-Shulman理论广义热弹性非Fourier热传导
Keywords:
Key words: couple-stress elasticity Lord-Shulman theory generalized thermoelasticity non-Fourier thermal conduction
分类号:
O343.7
文献标志码:
A
摘要:
摘要:非Fourier热传导的Lord-Shulman广义热弹性理论中包含了双曲型热传导方程,并且在广义热弹性介质中考虑了其微结构特性,引入了偶应力张量,偶应力研究可反映出材料的微尺度力学效应。文章基于Lord-Shulman广义热弹性理论,从能量守恒定律出发,分析了偶应力热弹性介质中的运动平衡方程、本构方程、能量方程以及边界条件的推导过程,并由此获得偶应力热弹性介质的运动控制方程和温度控制方程具体形式。结果表明:与经典热弹性理论的控制方程相比,基于Lord-Shulman理论的偶应力热弹性介质控制方程中的机械场与温度场相互耦合,而且在温度控制方程中存在含有弛豫时间的项,可使热信号以波动的形式和有限速度传播;而且当偶应力材料参数和弛豫时间取为零时,控制方程退化为经典理论的形式。
Abstract:
Abstract: With the consideration of non-Fourier heat conduction, the Lord-Shulman generalized thermoelastic theory contains a hyperbolic heat conduction equation, and the couple-stress is introduced to reflect the effect of microscale and the microstructural characteristics of materials. Based on the Lord-Shulman generalized thermoelastic theory, the article analyzes the derivation of the motion equations, the constitutive equations, the energy equations and the boundary conditions in the couple-stress thermoelastic medium, obtaining the form of motion governing equation and temperature governing equation. The results show that, compared with the governing equations of the classical theory, the ones based on Lord-Shulman theory in which the thermal field and the mechanical field equations are coupling with each other and the governing equation of temperature field contains the relaxation time item. So the propagation of thermal signal is in the form of fluctuation, and the velocity of it is finite, and the equations can also degenerate into the classical ones when letting the couple-stress constant and the relaxation time are zero.

参考文献/References:

[l] 王洪钢.热弹性力学概论[M]. 北京:清华大学出版社, 1989. [2]Lord H.W., Shulman Y.. A generalized dynamical theory of thermoelasticity [J]. Journal of Mechanics Physical Solids,1967,15(5):299-309. [3]Green A.E. Lindsay K.A.. Thermoelasticity[J]. Journal of Elasticity ,1972,2(1):1-7. [4]Green A.E., Naghdi P.M.. A Re-Examination of the basic postulates of thermomechanics[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences,1991,432 (432):171-194. [5]Chandrasekharaiah D.S.. Thermoelasticity with second sound: a review[J]. Applied Mechanics Reviews,1986,39(3):355-376. [6]Chandrasekharaiah D.S.. Hyperbolic thermoelasticity: a review of recent literature[J]. Applied Mechanics Reviews,1998,51(12):705-729. [7]田晓耕,沈亚鹏.广义热弹性问题研究进展[J].力学进展,2012,42(1):18-28. [8]任康乐,周凤玺,鲁庆华,等.功能梯度材料广义热弹性响应[J].兰州理工大学学报,2012,38(2):168-172. [9]郭攀,武文华,吴志刚.非傅里叶热弹性的时域间断迦辽金有限元方法[J].力学学报,2013,45(3):447-450. [10]王颖泽,王谦,刘栋,等.有限厚度圆柱壳热冲击问题的广义热弹性解[J].应用数学和力学,2016,37(6):644-654. [11] Voigt W. . Theoretische studien über die elasticitätsverhältnisse der krystalle[M]. Königliche Gesellschaft der Wissenschaften zu Göttingen, 1887. [12] Cosserat E., Cosserat F.. Théorie des corps déformables[J]. Paris, 1909, 3: 17-29. [13] Truesdell C., Toupin R.. The Classical Field Theories[M]. Berlin: Springer Berlin Heidelberg, 1960. [14]Toupin R.A.. Elastic materials with couple-stresses[J]. Archive for Rational Mechanics and Analysis ,1962,11(1):385-414. [15]Mindlin R.D. , Tiersten H.F.. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis ,1962,11(1):415-448. [16]Aero E.L., Kuvshinskii E.V.. Fundamental equations of the theory of elastic media with rotationally interacting particles[J]. Soviet Physics-Solid State,1961,2(7):1272-1281. [17] 张敦福,王相玉,李术才. 偶应力对含充填层状岩体边界层效应的影响[J]. 岩石力学与工程学报,2011(S1):3288-3294. [18]吴延峰,张敦福,张波,等.拉力型锚杆锚固界面剪应力分布偶应力理论分析[J].岩土力学,2013,34(z1):187-191, 227. [19]苏文政,刘书田.一类多孔固体的等效偶应力动力学梁模型[J].力学学报,2016,48(1):111-126. [20]贺丹,杨万里.基于新修正偶应力理论的斜交铺设层合Kirchhoff板模型与尺度效应[J].复合材料学报,2016,33(6):1311-1317.

备注/Memo

备注/Memo:
收稿日期:2016-08-1 作者简介:李龙(1991-), 男, 硕士, 助理工程师,主要从事弹性波理论等方面的的研究, Email:linkenzoo@163.com
更新日期/Last Update: 2016-10-25