[1]段英锋,王兆清,林本芳.重心有理插值配点法分析矩形板自由振动[J].山东建筑大学学报,2009,(05):434-437.
 DUAN Ying-feng,WANG Zhao-qing,LIN Ben-fang.Analysis of free vibrations of rectangular plates by barycentric rational interpolation collocation method[J].Journal of Shandong jianzhu university,2009,(05):434-437.
点击复制

重心有理插值配点法分析矩形板自由振动()
分享到:

《山东建筑大学学报》[ISSN:1673-7644/CN:37-1449/TU]

卷:
期数:
2009年05期
页码:
434-437
栏目:
研究论文
出版日期:
2009-10-15

文章信息/Info

Title:
Analysis of free vibrations of rectangular plates by barycentric rational interpolation collocation method
作者:
段英锋王兆清林本芳
山东建筑大学 工程结构现代分析与设计研究所,山东 济南 250101
Author(s):
DUAN Ying-feng WANG Zhao-qing LIN Ben-fang
Institute of Modern Analysis & Design for Engineering Structures, Shandong Jianzhu University, Jinan 250101, China
关键词:
重心有理插值配点法矩形板自由振动微分方程
Keywords:

 barycentric rational interpolation collocation method rectangular plates free vibrations differential equation

 

分类号:
O241.3; O174.42
文献标志码:
A
摘要:
重心型有理函数插值在整个求解区间具有无穷次光滑性,且不存在极点,保证了计算的精度。本文在计算区间采用工程上常用的等距节点离散,利用数值稳定性好、计算精度高的重心有理插值配点法求解矩形板的自由振动,并与Chebyshev配点法等方法的计算结果做了对比。算例表明,重心有理插值配点法的具有计算公式简单,程序实施方便和计算精度高的优点。
Abstract:
The barycentric rational interpolation bears no poles and arbitrary high approximation to ensure the accuracy of the calculation. The paper introduces, discrete ecomputational interval by equidistant nodes which is commonly used in engineering with numerical stability, and high precision, rational interpolation collocation for solving the free vibration of rectangular plates. And the paper compares Chebyshev collocation method with other methods concerning alculation results. Numerical results demonstrate that the proposed numerical method has advantages of simple formulations, easy programming and high precision.
更新日期/Last Update: 2009-10-21